Properties

Label 2-160-1.1-c3-0-0
Degree $2$
Conductor $160$
Sign $1$
Analytic cond. $9.44030$
Root an. cond. $3.07250$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.21·3-s − 5·5-s − 7.21·7-s + 24.9·9-s − 43.2·11-s + 34·13-s + 36.0·15-s + 114·17-s + 51.9·21-s + 209.·23-s + 25·25-s + 14.4·27-s − 26·29-s − 100.·31-s + 312·33-s + 36.0·35-s − 150·37-s − 245.·39-s + 342·41-s + 454.·43-s − 124.·45-s − 584.·47-s − 291·49-s − 822.·51-s − 262·53-s + 216.·55-s + 490.·59-s + ⋯
L(s)  = 1  − 1.38·3-s − 0.447·5-s − 0.389·7-s + 0.925·9-s − 1.18·11-s + 0.725·13-s + 0.620·15-s + 1.62·17-s + 0.540·21-s + 1.89·23-s + 0.200·25-s + 0.102·27-s − 0.166·29-s − 0.584·31-s + 1.64·33-s + 0.174·35-s − 0.666·37-s − 1.00·39-s + 1.30·41-s + 1.61·43-s − 0.414·45-s − 1.81·47-s − 0.848·49-s − 2.25·51-s − 0.679·53-s + 0.530·55-s + 1.08·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(160\)    =    \(2^{5} \cdot 5\)
Sign: $1$
Analytic conductor: \(9.44030\)
Root analytic conductor: \(3.07250\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 160,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7925475864\)
\(L(\frac12)\) \(\approx\) \(0.7925475864\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
good3 \( 1 + 7.21T + 27T^{2} \)
7 \( 1 + 7.21T + 343T^{2} \)
11 \( 1 + 43.2T + 1.33e3T^{2} \)
13 \( 1 - 34T + 2.19e3T^{2} \)
17 \( 1 - 114T + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 - 209.T + 1.21e4T^{2} \)
29 \( 1 + 26T + 2.43e4T^{2} \)
31 \( 1 + 100.T + 2.97e4T^{2} \)
37 \( 1 + 150T + 5.06e4T^{2} \)
41 \( 1 - 342T + 6.89e4T^{2} \)
43 \( 1 - 454.T + 7.95e4T^{2} \)
47 \( 1 + 584.T + 1.03e5T^{2} \)
53 \( 1 + 262T + 1.48e5T^{2} \)
59 \( 1 - 490.T + 2.05e5T^{2} \)
61 \( 1 + 262T + 2.26e5T^{2} \)
67 \( 1 - 497.T + 3.00e5T^{2} \)
71 \( 1 - 1.05e3T + 3.57e5T^{2} \)
73 \( 1 - 682T + 3.89e5T^{2} \)
79 \( 1 - 201.T + 4.93e5T^{2} \)
83 \( 1 + 151.T + 5.71e5T^{2} \)
89 \( 1 + 630T + 7.04e5T^{2} \)
97 \( 1 + 966T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.49003558253112920914958284721, −11.21755171224890145406112500375, −10.79268184632276725132185486410, −9.609298784959027436598883974849, −8.097754676814228269932349434855, −6.99163985445905236322984814480, −5.77771322950821232215338289878, −4.98884383692948695652089246103, −3.28101673064146382899431725068, −0.76628277641064768699482609404, 0.76628277641064768699482609404, 3.28101673064146382899431725068, 4.98884383692948695652089246103, 5.77771322950821232215338289878, 6.99163985445905236322984814480, 8.097754676814228269932349434855, 9.609298784959027436598883974849, 10.79268184632276725132185486410, 11.21755171224890145406112500375, 12.49003558253112920914958284721

Graph of the $Z$-function along the critical line