L(s) = 1 | + 250·25-s − 1.22e3·29-s − 478·81-s + 5.54e3·89-s − 1.51e3·101-s − 5.32e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8.78e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
L(s) = 1 | + 2·25-s − 7.83·29-s − 0.655·81-s + 6.60·89-s − 1.48·101-s − 4·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 4·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s + 0.000292·227-s + 0.000288·229-s + ⋯ |
Λ(s)=(=((220⋅54)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((220⋅54)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅54
|
Sign: |
1
|
Analytic conductor: |
7942.26 |
Root analytic conductor: |
3.07250 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅54, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.5088585655 |
L(21) |
≈ |
0.5088585655 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | (1−p3T2)2 |
good | 3 | C22×C22 | (1−14T+98T2−14p3T3+p6T4)(1+14T+98T2+14p3T3+p6T4) |
| 7 | C22×C22 | (1−18T+162T2−18p3T3+p6T4)(1+18T+162T2+18p3T3+p6T4) |
| 11 | C2 | (1+p3T2)4 |
| 13 | C2 | (1−p3T2)4 |
| 17 | C2 | (1−p3T2)4 |
| 19 | C2 | (1+p3T2)4 |
| 23 | C22×C22 | (1−134T+8978T2−134p3T3+p6T4)(1+134T+8978T2+134p3T3+p6T4) |
| 29 | C2 | (1+306T+p3T2)4 |
| 31 | C2 | (1+p3T2)4 |
| 37 | C2 | (1−p3T2)4 |
| 41 | C22 | (1−74338T2+p6T4)2 |
| 43 | C22×C22 | (1−594T+176418T2−594p3T3+p6T4)(1+594T+176418T2+594p3T3+p6T4) |
| 47 | C22×C22 | (1−602T+181202T2−602p3T3+p6T4)(1+602T+181202T2+602p3T3+p6T4) |
| 53 | C2 | (1−p3T2)4 |
| 59 | C2 | (1+p3T2)4 |
| 61 | C22 | (1+452342T2+p6T4)2 |
| 67 | C22×C22 | (1−1098T+602802T2−1098p3T3+p6T4)(1+1098T+602802T2+1098p3T3+p6T4) |
| 71 | C2 | (1+p3T2)4 |
| 73 | C2 | (1−p3T2)4 |
| 79 | C2 | (1+p3T2)4 |
| 83 | C22×C22 | (1−154T+11858T2−154p3T3+p6T4)(1+154T+11858T2+154p3T3+p6T4) |
| 89 | C2 | (1−1386T+p3T2)4 |
| 97 | C2 | (1−p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.142440889879378783652296202863, −9.084321433929143711189704304566, −8.296471432672225401798581744118, −8.121616736501044980628185671036, −7.76447838998563013933559703178, −7.52858319916217016773528016669, −7.42208168823084292373623505920, −6.98578195471648706148523551539, −6.86068672533443588908611754775, −6.38507898824676997381134157602, −5.90699923915792669497212227410, −5.89157886146161490282339699735, −5.35982987533224370712558748595, −5.13166426923616119496647256907, −5.10593770879553400022617563211, −4.32361141496976920208105231329, −4.05964249130542937344421446193, −3.59059949057182386486378014440, −3.55265180026937262639531173105, −3.08780382429683217382433433786, −2.36667406218455127757591975495, −1.93666941953532595376525967970, −1.78298412618732499995550685063, −0.997949833365966833715204881377, −0.16759679735773697081094993538,
0.16759679735773697081094993538, 0.997949833365966833715204881377, 1.78298412618732499995550685063, 1.93666941953532595376525967970, 2.36667406218455127757591975495, 3.08780382429683217382433433786, 3.55265180026937262639531173105, 3.59059949057182386486378014440, 4.05964249130542937344421446193, 4.32361141496976920208105231329, 5.10593770879553400022617563211, 5.13166426923616119496647256907, 5.35982987533224370712558748595, 5.89157886146161490282339699735, 5.90699923915792669497212227410, 6.38507898824676997381134157602, 6.86068672533443588908611754775, 6.98578195471648706148523551539, 7.42208168823084292373623505920, 7.52858319916217016773528016669, 7.76447838998563013933559703178, 8.121616736501044980628185671036, 8.296471432672225401798581744118, 9.084321433929143711189704304566, 9.142440889879378783652296202863