L(s) = 1 | + 15.2·3-s − 11.1i·5-s − 47.5i·7-s + 150.·9-s − 84.0·11-s − 236. i·13-s − 170. i·15-s + 407.·17-s − 124.·19-s − 724. i·21-s − 198. i·23-s − 125.·25-s + 1.05e3·27-s + 1.31e3i·29-s + 1.24e3i·31-s + ⋯ |
L(s) = 1 | + 1.69·3-s − 0.447i·5-s − 0.971i·7-s + 1.85·9-s − 0.694·11-s − 1.39i·13-s − 0.756i·15-s + 1.41·17-s − 0.343·19-s − 1.64i·21-s − 0.375i·23-s − 0.200·25-s + 1.45·27-s + 1.56i·29-s + 1.29i·31-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(0.563+0.825i)Λ(5−s)
Λ(s)=(=(160s/2ΓC(s+2)L(s)(0.563+0.825i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
0.563+0.825i
|
Analytic conductor: |
16.5391 |
Root analytic conductor: |
4.06684 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :2), 0.563+0.825i)
|
Particular Values
L(25) |
≈ |
2.81979−1.48887i |
L(21) |
≈ |
2.81979−1.48887i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+11.1iT |
good | 3 | 1−15.2T+81T2 |
| 7 | 1+47.5iT−2.40e3T2 |
| 11 | 1+84.0T+1.46e4T2 |
| 13 | 1+236.iT−2.85e4T2 |
| 17 | 1−407.T+8.35e4T2 |
| 19 | 1+124.T+1.30e5T2 |
| 23 | 1+198.iT−2.79e5T2 |
| 29 | 1−1.31e3iT−7.07e5T2 |
| 31 | 1−1.24e3iT−9.23e5T2 |
| 37 | 1+854.iT−1.87e6T2 |
| 41 | 1−3.07e3T+2.82e6T2 |
| 43 | 1+1.10e3T+3.41e6T2 |
| 47 | 1+284.iT−4.87e6T2 |
| 53 | 1+2.96e3iT−7.89e6T2 |
| 59 | 1+657.T+1.21e7T2 |
| 61 | 1−4.20e3iT−1.38e7T2 |
| 67 | 1−2.60e3T+2.01e7T2 |
| 71 | 1−4.54e3iT−2.54e7T2 |
| 73 | 1−822.T+2.83e7T2 |
| 79 | 1−3.04e3iT−3.89e7T2 |
| 83 | 1+1.12e4T+4.74e7T2 |
| 89 | 1+4.38e3T+6.27e7T2 |
| 97 | 1−4.44e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.61970898050435612076535118353, −10.60486923607831566451876028270, −10.00313146189513085215010428738, −8.764307666583623614565002744421, −7.961256428845415222593018065978, −7.25752943456632773854853158579, −5.26543386854645650030328396396, −3.78954566675677205474340707149, −2.83191625875302854734587890185, −1.09527278477892981191534660709,
2.01560084676799809241617362572, 2.90005481620528864281528410772, 4.20270093397125306724210551827, 5.97487581217592451019462935841, 7.47702392880393656789363282611, 8.208276950879684494079987872539, 9.301019596331628750364258368419, 9.888999833567989635309483439165, 11.43268054214140075788009219411, 12.51988787064466894327864516092