L(s) = 1 | − 3i·3-s + 2i·7-s − 6·9-s − 11-s + 4i·13-s + 5i·17-s + 19-s + 6·21-s + 2i·23-s + 9i·27-s − 8·29-s + 10·31-s + 3i·33-s + 6i·37-s + 12·39-s + ⋯ |
L(s) = 1 | − 1.73i·3-s + 0.755i·7-s − 2·9-s − 0.301·11-s + 1.10i·13-s + 1.21i·17-s + 0.229·19-s + 1.30·21-s + 0.417i·23-s + 1.73i·27-s − 1.48·29-s + 1.79·31-s + 0.522i·33-s + 0.986i·37-s + 1.92·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.131097438\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.131097438\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 3iT - 3T^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 - 5iT - 17T^{2} \) |
| 19 | \( 1 - T + 19T^{2} \) |
| 23 | \( 1 - 2iT - 23T^{2} \) |
| 29 | \( 1 + 8T + 29T^{2} \) |
| 31 | \( 1 - 10T + 31T^{2} \) |
| 37 | \( 1 - 6iT - 37T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 - 4iT - 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 - 8T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 - iT - 67T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + 3iT - 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 + 13iT - 83T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 + 14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.172233008589101017225964234474, −8.513325630923809575768664163890, −7.81236172682069523212773415653, −7.09745507008846527341507454473, −6.20563951633160571426882134350, −5.82959345824437763961307185915, −4.54389805745358666724377655179, −3.12842516438000579818624841082, −2.12685928326681266783326889312, −1.36799207208325963679370961364,
0.44636699284835547915522807559, 2.66411158964718331863472444671, 3.50108155382465016065228418309, 4.30551214951101528837659676053, 5.12463359720506145016660818974, 5.70906291585543162607006596579, 7.01624557358276738604468088384, 7.894062691419872661851029667603, 8.746598502943036555869545077196, 9.558458105415433116124152083751