L(s) = 1 | − 3i·3-s + 2i·7-s − 6·9-s − 11-s + 4i·13-s + 5i·17-s + 19-s + 6·21-s + 2i·23-s + 9i·27-s − 8·29-s + 10·31-s + 3i·33-s + 6i·37-s + 12·39-s + ⋯ |
L(s) = 1 | − 1.73i·3-s + 0.755i·7-s − 2·9-s − 0.301·11-s + 1.10i·13-s + 1.21i·17-s + 0.229·19-s + 1.30·21-s + 0.417i·23-s + 1.73i·27-s − 1.48·29-s + 1.79·31-s + 0.522i·33-s + 0.986i·37-s + 1.92·39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.131097438 |
L(21) |
≈ |
1.131097438 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+3iT−3T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1−5iT−17T2 |
| 19 | 1−T+19T2 |
| 23 | 1−2iT−23T2 |
| 29 | 1+8T+29T2 |
| 31 | 1−10T+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1+3T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−4iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1−iT−67T2 |
| 71 | 1+12T+71T2 |
| 73 | 1+3iT−73T2 |
| 79 | 1+6T+79T2 |
| 83 | 1+13iT−83T2 |
| 89 | 1−9T+89T2 |
| 97 | 1+14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.172233008589101017225964234474, −8.513325630923809575768664163890, −7.81236172682069523212773415653, −7.09745507008846527341507454473, −6.20563951633160571426882134350, −5.82959345824437763961307185915, −4.54389805745358666724377655179, −3.12842516438000579818624841082, −2.12685928326681266783326889312, −1.36799207208325963679370961364,
0.44636699284835547915522807559, 2.66411158964718331863472444671, 3.50108155382465016065228418309, 4.30551214951101528837659676053, 5.12463359720506145016660818974, 5.70906291585543162607006596579, 7.01624557358276738604468088384, 7.894062691419872661851029667603, 8.746598502943036555869545077196, 9.558458105415433116124152083751