L(s) = 1 | + i·3-s − 3.46·7-s + 2·9-s + 3i·11-s − 3.46i·13-s − 3·17-s + i·19-s − 3.46i·21-s + 5i·27-s + 10.3i·29-s − 6.92·31-s − 3·33-s − 10.3i·37-s + 3.46·39-s − 9·41-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 1.30·7-s + 0.666·9-s + 0.904i·11-s − 0.960i·13-s − 0.727·17-s + 0.229i·19-s − 0.755i·21-s + 0.962i·27-s + 1.92i·29-s − 1.24·31-s − 0.522·33-s − 1.70i·37-s + 0.554·39-s − 1.40·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2537410296\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2537410296\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - iT - 3T^{2} \) |
| 7 | \( 1 + 3.46T + 7T^{2} \) |
| 11 | \( 1 - 3iT - 11T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 - iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 10.3iT - 29T^{2} \) |
| 31 | \( 1 + 6.92T + 31T^{2} \) |
| 37 | \( 1 + 10.3iT - 37T^{2} \) |
| 41 | \( 1 + 9T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + 10.3T + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 12iT - 59T^{2} \) |
| 61 | \( 1 + 3.46iT - 61T^{2} \) |
| 67 | \( 1 - 11iT - 67T^{2} \) |
| 71 | \( 1 + 10.3T + 71T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 - 15iT - 83T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.765977240110172864210046772627, −9.313423654601141075990864250788, −8.390115674351517467231243206433, −7.10340782047133608642752497546, −6.91088661987878728805418645202, −5.65160285619789485509194899951, −4.88584051642711154660293347326, −3.81980025532918971019684572588, −3.18804795881932844336566795589, −1.80355679736556479217145312881,
0.093678746395081186256233238952, 1.62026431824694552832215749993, 2.81916895462776555185454130216, 3.79675474619812289015271751798, 4.71955274260915204150013817709, 6.13087382262574477057900967854, 6.47112624282762758891446549118, 7.21800529135140772036126671215, 8.167097059623443641594958024922, 9.043210088815498477207614265808