L(s) = 1 | + 2.44i·3-s − 1.41·7-s − 2.99·9-s − 2i·11-s + 5.65i·13-s + 4.89·17-s + 6i·19-s − 3.46i·21-s − 7.07·23-s − 6.92i·29-s − 6.92·31-s + 4.89·33-s + 2.82i·37-s − 13.8·39-s − 4·41-s + ⋯ |
L(s) = 1 | + 1.41i·3-s − 0.534·7-s − 0.999·9-s − 0.603i·11-s + 1.56i·13-s + 1.18·17-s + 1.37i·19-s − 0.755i·21-s − 1.47·23-s − 1.28i·29-s − 1.24·31-s + 0.852·33-s + 0.464i·37-s − 2.21·39-s − 0.624·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8869645387\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8869645387\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 2.44iT - 3T^{2} \) |
| 7 | \( 1 + 1.41T + 7T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 - 5.65iT - 13T^{2} \) |
| 17 | \( 1 - 4.89T + 17T^{2} \) |
| 19 | \( 1 - 6iT - 19T^{2} \) |
| 23 | \( 1 + 7.07T + 23T^{2} \) |
| 29 | \( 1 + 6.92iT - 29T^{2} \) |
| 31 | \( 1 + 6.92T + 31T^{2} \) |
| 37 | \( 1 - 2.82iT - 37T^{2} \) |
| 41 | \( 1 + 4T + 41T^{2} \) |
| 43 | \( 1 - 2.44iT - 43T^{2} \) |
| 47 | \( 1 + 4.24T + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 2iT - 59T^{2} \) |
| 61 | \( 1 + 3.46iT - 61T^{2} \) |
| 67 | \( 1 - 2.44iT - 67T^{2} \) |
| 71 | \( 1 - 6.92T + 71T^{2} \) |
| 73 | \( 1 + 4.89T + 73T^{2} \) |
| 79 | \( 1 + 6.92T + 79T^{2} \) |
| 83 | \( 1 + 12.2iT - 83T^{2} \) |
| 89 | \( 1 - 2T + 89T^{2} \) |
| 97 | \( 1 - 14.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.932957592848461957890578875206, −9.293574227710167895709027325655, −8.421621205012973606176883561391, −7.59490645848291880302763610989, −6.32446239892683138331303411466, −5.77732406983857478153175491926, −4.72328836734846006634082748657, −3.82735242538910217186348391247, −3.40934392789887687042232423191, −1.83793835563667416730803563954,
0.33425336309168928140129925263, 1.57983943697422879962654576470, 2.69720058437501090112049134249, 3.58697076141385145231122429307, 5.09839333409509789158952997897, 5.82691119639469323577186188200, 6.71479214137444351083086266201, 7.40967379423325169641371811521, 7.914264777743714840309743789919, 8.809820810119249559352133625135