L(s) = 1 | + 3.25·3-s + (−2.54 + 2.54i)7-s + 7.61·9-s + (0.462 + 0.462i)11-s + 1.33i·13-s + (−2.37 + 2.37i)17-s + (2.69 + 2.69i)19-s + (−8.27 + 8.27i)21-s + (2.10 + 2.10i)23-s + 15.0·27-s + (1.97 − 1.97i)29-s + 7.03i·31-s + (1.50 + 1.50i)33-s − 7.81i·37-s + 4.34i·39-s + ⋯ |
L(s) = 1 | + 1.88·3-s + (−0.960 + 0.960i)7-s + 2.53·9-s + (0.139 + 0.139i)11-s + 0.370i·13-s + (−0.575 + 0.575i)17-s + (0.618 + 0.618i)19-s + (−1.80 + 1.80i)21-s + (0.438 + 0.438i)23-s + 2.89·27-s + (0.367 − 0.367i)29-s + 1.26i·31-s + (0.262 + 0.262i)33-s − 1.28i·37-s + 0.696i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.659 - 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.659 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.095315013\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.095315013\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 3.25T + 3T^{2} \) |
| 7 | \( 1 + (2.54 - 2.54i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.462 - 0.462i)T + 11iT^{2} \) |
| 13 | \( 1 - 1.33iT - 13T^{2} \) |
| 17 | \( 1 + (2.37 - 2.37i)T - 17iT^{2} \) |
| 19 | \( 1 + (-2.69 - 2.69i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2.10 - 2.10i)T + 23iT^{2} \) |
| 29 | \( 1 + (-1.97 + 1.97i)T - 29iT^{2} \) |
| 31 | \( 1 - 7.03iT - 31T^{2} \) |
| 37 | \( 1 + 7.81iT - 37T^{2} \) |
| 41 | \( 1 + 2.17iT - 41T^{2} \) |
| 43 | \( 1 + 3.10iT - 43T^{2} \) |
| 47 | \( 1 + (0.0727 + 0.0727i)T + 47iT^{2} \) |
| 53 | \( 1 + 0.719T + 53T^{2} \) |
| 59 | \( 1 + (-8.67 + 8.67i)T - 59iT^{2} \) |
| 61 | \( 1 + (7.10 + 7.10i)T + 61iT^{2} \) |
| 67 | \( 1 - 10.8iT - 67T^{2} \) |
| 71 | \( 1 - 15.3T + 71T^{2} \) |
| 73 | \( 1 + (-0.905 + 0.905i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.90T + 79T^{2} \) |
| 83 | \( 1 + 6.02T + 83T^{2} \) |
| 89 | \( 1 + 7.46T + 89T^{2} \) |
| 97 | \( 1 + (3.74 - 3.74i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.412709469417052243779239502615, −8.749621904599762981801171728564, −8.195732608404519156151480245293, −7.20115998134154839313817807116, −6.55888319869924930379184605889, −5.38466058989421285600464549061, −4.09594725730860287408397141372, −3.39098314572866647020694657233, −2.58488343808646049887508877061, −1.70446031287955533651120932502,
1.00508376787031812542414575073, 2.54003883982012965750975971112, 3.14885981699264826276198256477, 3.96785253824889521634329456287, 4.80837162547630514519961614600, 6.44664082219226391753207759193, 7.10271955122697743572912178043, 7.74030222334838137924983837791, 8.571265259874831822616409315659, 9.299380168150577522591353370896