Properties

Label 2-40e2-20.19-c2-0-60
Degree $2$
Conductor $1600$
Sign $-0.894 + 0.447i$
Analytic cond. $43.5968$
Root an. cond. $6.60279$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.23·3-s + 1.23·7-s − 7.47·9-s − 11.4i·11-s − 5.41i·13-s − 6.94i·17-s + 29.8i·19-s + 1.52·21-s + 19.1·23-s − 20.3·27-s + 21.0·29-s − 34.4i·31-s − 14.1i·33-s − 19.3i·37-s − 6.69i·39-s + ⋯
L(s)  = 1  + 0.412·3-s + 0.176·7-s − 0.830·9-s − 1.03i·11-s − 0.416i·13-s − 0.408i·17-s + 1.57i·19-s + 0.0727·21-s + 0.831·23-s − 0.754·27-s + 0.726·29-s − 1.11i·31-s − 0.427i·33-s − 0.521i·37-s − 0.171i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(43.5968\)
Root analytic conductor: \(6.60279\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (1599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1),\ -0.894 + 0.447i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7126172218\)
\(L(\frac12)\) \(\approx\) \(0.7126172218\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 1.23T + 9T^{2} \)
7 \( 1 - 1.23T + 49T^{2} \)
11 \( 1 + 11.4iT - 121T^{2} \)
13 \( 1 + 5.41iT - 169T^{2} \)
17 \( 1 + 6.94iT - 289T^{2} \)
19 \( 1 - 29.8iT - 361T^{2} \)
23 \( 1 - 19.1T + 529T^{2} \)
29 \( 1 - 21.0T + 841T^{2} \)
31 \( 1 + 34.4iT - 961T^{2} \)
37 \( 1 + 19.3iT - 1.36e3T^{2} \)
41 \( 1 + 58.1T + 1.68e3T^{2} \)
43 \( 1 + 62.7T + 1.84e3T^{2} \)
47 \( 1 + 63.4T + 2.20e3T^{2} \)
53 \( 1 - 98.1iT - 2.80e3T^{2} \)
59 \( 1 - 19.2iT - 3.48e3T^{2} \)
61 \( 1 + 1.19T + 3.72e3T^{2} \)
67 \( 1 - 5.01T + 4.48e3T^{2} \)
71 \( 1 + 84.3iT - 5.04e3T^{2} \)
73 \( 1 + 70.7iT - 5.32e3T^{2} \)
79 \( 1 + 124. iT - 6.24e3T^{2} \)
83 \( 1 + 160.T + 6.88e3T^{2} \)
89 \( 1 + 46.2T + 7.92e3T^{2} \)
97 \( 1 + 133. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.664212416413323967508405778659, −8.254083768799011439744958855301, −7.49449124308533519388869111486, −6.28610896460701269077989526484, −5.70276630107305793088295291585, −4.75943741235450655639114459033, −3.46043759343597370693417433588, −2.96613848193450833842359303204, −1.61000827254847849828437404066, −0.17194065519187648604018347506, 1.53362668086604598520576605943, 2.61700990131689106823100500549, 3.46619562182995492393333204976, 4.76243407389736469387259061469, 5.18702377736938851369213311239, 6.72650769174636230022790176137, 6.89090167389723491659372142838, 8.307604037454486820094730982078, 8.547533326221601270166664115324, 9.566457509570299008438805026253

Graph of the $Z$-function along the critical line