Properties

Label 2-40e2-1.1-c3-0-77
Degree $2$
Conductor $1600$
Sign $-1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 16·7-s − 11·9-s + 36·11-s − 42·13-s + 110·17-s − 116·19-s − 64·21-s + 16·23-s + 152·27-s − 198·29-s − 240·31-s − 144·33-s − 258·37-s + 168·39-s + 442·41-s + 292·43-s + 392·47-s − 87·49-s − 440·51-s + 142·53-s + 464·57-s − 348·59-s + 570·61-s − 176·63-s − 692·67-s − 64·69-s + ⋯
L(s)  = 1  − 0.769·3-s + 0.863·7-s − 0.407·9-s + 0.986·11-s − 0.896·13-s + 1.56·17-s − 1.40·19-s − 0.665·21-s + 0.145·23-s + 1.08·27-s − 1.26·29-s − 1.39·31-s − 0.759·33-s − 1.14·37-s + 0.689·39-s + 1.68·41-s + 1.03·43-s + 1.21·47-s − 0.253·49-s − 1.20·51-s + 0.368·53-s + 1.07·57-s − 0.767·59-s + 1.19·61-s − 0.351·63-s − 1.26·67-s − 0.111·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
13 \( 1 + 42 T + p^{3} T^{2} \)
17 \( 1 - 110 T + p^{3} T^{2} \)
19 \( 1 + 116 T + p^{3} T^{2} \)
23 \( 1 - 16 T + p^{3} T^{2} \)
29 \( 1 + 198 T + p^{3} T^{2} \)
31 \( 1 + 240 T + p^{3} T^{2} \)
37 \( 1 + 258 T + p^{3} T^{2} \)
41 \( 1 - 442 T + p^{3} T^{2} \)
43 \( 1 - 292 T + p^{3} T^{2} \)
47 \( 1 - 392 T + p^{3} T^{2} \)
53 \( 1 - 142 T + p^{3} T^{2} \)
59 \( 1 + 348 T + p^{3} T^{2} \)
61 \( 1 - 570 T + p^{3} T^{2} \)
67 \( 1 + 692 T + p^{3} T^{2} \)
71 \( 1 + 168 T + p^{3} T^{2} \)
73 \( 1 - 134 T + p^{3} T^{2} \)
79 \( 1 + 784 T + p^{3} T^{2} \)
83 \( 1 + 564 T + p^{3} T^{2} \)
89 \( 1 - 1034 T + p^{3} T^{2} \)
97 \( 1 - 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.741319773006440203323094931671, −7.70830522624835213176117818082, −7.11346041672006348402113594109, −5.95491748426959436023249829427, −5.50758149764219523481945357671, −4.55930156556841928628265707567, −3.66196236461227128796310564937, −2.30806526050957932491688580605, −1.22609702552539657233266644505, 0, 1.22609702552539657233266644505, 2.30806526050957932491688580605, 3.66196236461227128796310564937, 4.55930156556841928628265707567, 5.50758149764219523481945357671, 5.95491748426959436023249829427, 7.11346041672006348402113594109, 7.70830522624835213176117818082, 8.741319773006440203323094931671

Graph of the $Z$-function along the critical line