L(s) = 1 | − 2·3-s + 6·7-s − 23·9-s + 32·11-s − 38·13-s − 26·17-s + 100·19-s − 12·21-s − 78·23-s + 100·27-s + 50·29-s + 108·31-s − 64·33-s + 266·37-s + 76·39-s + 22·41-s − 442·43-s − 514·47-s − 307·49-s + 52·51-s + 2·53-s − 200·57-s + 500·59-s + 518·61-s − 138·63-s − 126·67-s + 156·69-s + ⋯ |
L(s) = 1 | − 0.384·3-s + 0.323·7-s − 0.851·9-s + 0.877·11-s − 0.810·13-s − 0.370·17-s + 1.20·19-s − 0.124·21-s − 0.707·23-s + 0.712·27-s + 0.320·29-s + 0.625·31-s − 0.337·33-s + 1.18·37-s + 0.312·39-s + 0.0838·41-s − 1.56·43-s − 1.59·47-s − 0.895·49-s + 0.142·51-s + 0.00518·53-s − 0.464·57-s + 1.10·59-s + 1.08·61-s − 0.275·63-s − 0.229·67-s + 0.272·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1600s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2T+p3T2 |
| 7 | 1−6T+p3T2 |
| 11 | 1−32T+p3T2 |
| 13 | 1+38T+p3T2 |
| 17 | 1+26T+p3T2 |
| 19 | 1−100T+p3T2 |
| 23 | 1+78T+p3T2 |
| 29 | 1−50T+p3T2 |
| 31 | 1−108T+p3T2 |
| 37 | 1−266T+p3T2 |
| 41 | 1−22T+p3T2 |
| 43 | 1+442T+p3T2 |
| 47 | 1+514T+p3T2 |
| 53 | 1−2T+p3T2 |
| 59 | 1−500T+p3T2 |
| 61 | 1−518T+p3T2 |
| 67 | 1+126T+p3T2 |
| 71 | 1+412T+p3T2 |
| 73 | 1−878T+p3T2 |
| 79 | 1+600T+p3T2 |
| 83 | 1+282T+p3T2 |
| 89 | 1+150T+p3T2 |
| 97 | 1+386T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.549635747050430196113879821730, −7.959014958217588211203349273307, −6.91251799696926957634376922130, −6.24093483968302457641386762894, −5.30324480511294971580678990386, −4.61968981095360200289027508977, −3.47865249188224677109850834953, −2.47432493945510607249898334872, −1.22786431127161040378292335997, 0,
1.22786431127161040378292335997, 2.47432493945510607249898334872, 3.47865249188224677109850834953, 4.61968981095360200289027508977, 5.30324480511294971580678990386, 6.24093483968302457641386762894, 6.91251799696926957634376922130, 7.959014958217588211203349273307, 8.549635747050430196113879821730