Properties

Label 2-40e2-1.1-c3-0-78
Degree $2$
Conductor $1600$
Sign $-1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 6·7-s − 23·9-s + 32·11-s − 38·13-s − 26·17-s + 100·19-s − 12·21-s − 78·23-s + 100·27-s + 50·29-s + 108·31-s − 64·33-s + 266·37-s + 76·39-s + 22·41-s − 442·43-s − 514·47-s − 307·49-s + 52·51-s + 2·53-s − 200·57-s + 500·59-s + 518·61-s − 138·63-s − 126·67-s + 156·69-s + ⋯
L(s)  = 1  − 0.384·3-s + 0.323·7-s − 0.851·9-s + 0.877·11-s − 0.810·13-s − 0.370·17-s + 1.20·19-s − 0.124·21-s − 0.707·23-s + 0.712·27-s + 0.320·29-s + 0.625·31-s − 0.337·33-s + 1.18·37-s + 0.312·39-s + 0.0838·41-s − 1.56·43-s − 1.59·47-s − 0.895·49-s + 0.142·51-s + 0.00518·53-s − 0.464·57-s + 1.10·59-s + 1.08·61-s − 0.275·63-s − 0.229·67-s + 0.272·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2 T + p^{3} T^{2} \)
7 \( 1 - 6 T + p^{3} T^{2} \)
11 \( 1 - 32 T + p^{3} T^{2} \)
13 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 + 26 T + p^{3} T^{2} \)
19 \( 1 - 100 T + p^{3} T^{2} \)
23 \( 1 + 78 T + p^{3} T^{2} \)
29 \( 1 - 50 T + p^{3} T^{2} \)
31 \( 1 - 108 T + p^{3} T^{2} \)
37 \( 1 - 266 T + p^{3} T^{2} \)
41 \( 1 - 22 T + p^{3} T^{2} \)
43 \( 1 + 442 T + p^{3} T^{2} \)
47 \( 1 + 514 T + p^{3} T^{2} \)
53 \( 1 - 2 T + p^{3} T^{2} \)
59 \( 1 - 500 T + p^{3} T^{2} \)
61 \( 1 - 518 T + p^{3} T^{2} \)
67 \( 1 + 126 T + p^{3} T^{2} \)
71 \( 1 + 412 T + p^{3} T^{2} \)
73 \( 1 - 878 T + p^{3} T^{2} \)
79 \( 1 + 600 T + p^{3} T^{2} \)
83 \( 1 + 282 T + p^{3} T^{2} \)
89 \( 1 + 150 T + p^{3} T^{2} \)
97 \( 1 + 386 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.549635747050430196113879821730, −7.959014958217588211203349273307, −6.91251799696926957634376922130, −6.24093483968302457641386762894, −5.30324480511294971580678990386, −4.61968981095360200289027508977, −3.47865249188224677109850834953, −2.47432493945510607249898334872, −1.22786431127161040378292335997, 0, 1.22786431127161040378292335997, 2.47432493945510607249898334872, 3.47865249188224677109850834953, 4.61968981095360200289027508977, 5.30324480511294971580678990386, 6.24093483968302457641386762894, 6.91251799696926957634376922130, 7.959014958217588211203349273307, 8.549635747050430196113879821730

Graph of the $Z$-function along the critical line