L(s) = 1 | + (0.292 + 0.506i)2-s + (0.510 + 0.294i)3-s + (0.829 − 1.43i)4-s + (−1.76 − 3.05i)5-s + 0.344i·6-s + (2.22 + 1.43i)7-s + 2.13·8-s + (−1.32 − 2.29i)9-s + (1.03 − 1.78i)10-s + (−0.243 − 0.140i)11-s + (0.846 − 0.488i)12-s + 6.20i·13-s + (−0.0792 + 1.54i)14-s − 2.08i·15-s + (−1.03 − 1.79i)16-s + (−1.89 + 3.28i)17-s + ⋯ |
L(s) = 1 | + (0.206 + 0.357i)2-s + (0.294 + 0.170i)3-s + (0.414 − 0.718i)4-s + (−0.790 − 1.36i)5-s + 0.140i·6-s + (0.839 + 0.543i)7-s + 0.755·8-s + (−0.442 − 0.765i)9-s + (0.326 − 0.565i)10-s + (−0.0733 − 0.0423i)11-s + (0.244 − 0.141i)12-s + 1.72i·13-s + (−0.0211 + 0.412i)14-s − 0.537i·15-s + (−0.258 − 0.447i)16-s + (−0.460 + 0.797i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(0.932+0.361i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(0.932+0.361i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.932+0.361i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(45,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), 0.932+0.361i)
|
Particular Values
L(1) |
≈ |
1.37428−0.257465i |
L(21) |
≈ |
1.37428−0.257465i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−2.22−1.43i)T |
| 23 | 1+(−4.78+0.372i)T |
good | 2 | 1+(−0.292−0.506i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.510−0.294i)T+(1.5+2.59i)T2 |
| 5 | 1+(1.76+3.05i)T+(−2.5+4.33i)T2 |
| 11 | 1+(0.243+0.140i)T+(5.5+9.52i)T2 |
| 13 | 1−6.20iT−13T2 |
| 17 | 1+(1.89−3.28i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.92−3.33i)T+(−9.5+16.4i)T2 |
| 29 | 1+2.64T+29T2 |
| 31 | 1+(4.59+2.65i)T+(15.5+26.8i)T2 |
| 37 | 1+(−0.645+0.372i)T+(18.5−32.0i)T2 |
| 41 | 1+4.20iT−41T2 |
| 43 | 1−7.90iT−43T2 |
| 47 | 1+(5.41−3.12i)T+(23.5−40.7i)T2 |
| 53 | 1+(−1.15−0.664i)T+(26.5+45.8i)T2 |
| 59 | 1+(−3.11−1.79i)T+(29.5+51.0i)T2 |
| 61 | 1+(5.17+8.96i)T+(−30.5+52.8i)T2 |
| 67 | 1+(9.69+5.59i)T+(33.5+58.0i)T2 |
| 71 | 1−5.77T+71T2 |
| 73 | 1+(−6.45−3.72i)T+(36.5+63.2i)T2 |
| 79 | 1+(−6.19+3.57i)T+(39.5−68.4i)T2 |
| 83 | 1+10.3T+83T2 |
| 89 | 1+(2.79+4.83i)T+(−44.5+77.0i)T2 |
| 97 | 1−10.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.73521310062000690000805037602, −11.73193389503808730690571721246, −11.16824333521101360890288687304, −9.397697759433678869627377289637, −8.791245195421682891327452722916, −7.70358020967331542885638566115, −6.25330695811111162206507541230, −5.06751426054817791512220002540, −4.11115985068732770952850420502, −1.63170443547962894657868202379,
2.61020537051098237097086166868, 3.43478732647794967673011897909, 5.04192196988942998692936817554, 7.16508222285407294352513431529, 7.49858012139684080445381488060, 8.445876357314696281722681890122, 10.51633810724519342367937496235, 11.03410119640308966418557875624, 11.63260226006320875218776211353, 13.02594940495310867136902761507