L(s) = 1 | + (1.14 − 1.99i)2-s + (0.604 − 0.349i)3-s + (−1.64 − 2.84i)4-s + (0.630 − 1.09i)5-s − 1.60i·6-s + (0.738 + 2.54i)7-s − 2.94·8-s + (−1.25 + 2.17i)9-s + (−1.44 − 2.51i)10-s + (−3.12 + 1.80i)11-s + (−1.98 − 1.14i)12-s + 1.83i·13-s + (5.90 + 1.45i)14-s − 0.880i·15-s + (−0.106 + 0.185i)16-s + (−3.52 − 6.09i)17-s + ⋯ |
L(s) = 1 | + (0.812 − 1.40i)2-s + (0.349 − 0.201i)3-s + (−0.820 − 1.42i)4-s + (0.282 − 0.488i)5-s − 0.655i·6-s + (0.278 + 0.960i)7-s − 1.04·8-s + (−0.418 + 0.725i)9-s + (−0.458 − 0.794i)10-s + (−0.941 + 0.543i)11-s + (−0.573 − 0.330i)12-s + 0.509i·13-s + (1.57 + 0.387i)14-s − 0.227i·15-s + (−0.0267 + 0.0463i)16-s + (−0.854 − 1.47i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.317+0.948i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(−0.317+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.317+0.948i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(68,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), −0.317+0.948i)
|
Particular Values
L(1) |
≈ |
1.04277−1.44873i |
L(21) |
≈ |
1.04277−1.44873i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−0.738−2.54i)T |
| 23 | 1+(−4.25−2.21i)T |
good | 2 | 1+(−1.14+1.99i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.604+0.349i)T+(1.5−2.59i)T2 |
| 5 | 1+(−0.630+1.09i)T+(−2.5−4.33i)T2 |
| 11 | 1+(3.12−1.80i)T+(5.5−9.52i)T2 |
| 13 | 1−1.83iT−13T2 |
| 17 | 1+(3.52+6.09i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.23+2.13i)T+(−9.5−16.4i)T2 |
| 29 | 1+3.82T+29T2 |
| 31 | 1+(−0.372+0.215i)T+(15.5−26.8i)T2 |
| 37 | 1+(−3.54−2.04i)T+(18.5+32.0i)T2 |
| 41 | 1+8.63iT−41T2 |
| 43 | 1−0.231iT−43T2 |
| 47 | 1+(3.81+2.20i)T+(23.5+40.7i)T2 |
| 53 | 1+(6.46−3.73i)T+(26.5−45.8i)T2 |
| 59 | 1+(−3.28+1.89i)T+(29.5−51.0i)T2 |
| 61 | 1+(−3.88+6.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.37+1.94i)T+(33.5−58.0i)T2 |
| 71 | 1−3.24T+71T2 |
| 73 | 1+(13.5−7.80i)T+(36.5−63.2i)T2 |
| 79 | 1+(5.90+3.40i)T+(39.5+68.4i)T2 |
| 83 | 1−9.16T+83T2 |
| 89 | 1+(6.20−10.7i)T+(−44.5−77.0i)T2 |
| 97 | 1−4.25T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.71512549711008933720766213346, −11.53888889033073311420298045998, −11.05576821776993990140758609256, −9.613927081846198533699140767632, −8.871879257310536212765486250944, −7.39180842701811105568860852260, −5.28622298045511918955361364531, −4.87101621508096310726906976792, −2.87403912951152061044107876515, −2.02345852592123586836323209516,
3.25566573161341272840863712189, 4.44389373751923019169885027645, 5.82488948848426711859410203859, 6.64198062836667678605689492105, 7.83286478251042627621106007180, 8.572086941738229754202409145632, 10.20294113678944288913275830015, 11.07875402457912474187082472988, 12.86761794098738590062861959215, 13.35688081493407244851872731391