L(s) = 1 | + 0.765·2-s + 0.826i·3-s − 7.41·4-s − 5.17·5-s + 0.633i·6-s + (15.9 − 9.38i)7-s − 11.8·8-s + 26.3·9-s − 3.96·10-s + 51.1i·11-s − 6.12i·12-s − 79.0i·13-s + (12.2 − 7.18i)14-s − 4.28i·15-s + 50.2·16-s + 111.·17-s + ⋯ |
L(s) = 1 | + 0.270·2-s + 0.159i·3-s − 0.926·4-s − 0.463·5-s + 0.0430i·6-s + (0.862 − 0.506i)7-s − 0.521·8-s + 0.974·9-s − 0.125·10-s + 1.40i·11-s − 0.147i·12-s − 1.68i·13-s + (0.233 − 0.137i)14-s − 0.0736i·15-s + 0.785·16-s + 1.58·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.129i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.991 + 0.129i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.69023 - 0.109814i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69023 - 0.109814i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-15.9 + 9.38i)T \) |
| 23 | \( 1 + (-87.0 - 67.7i)T \) |
good | 2 | \( 1 - 0.765T + 8T^{2} \) |
| 3 | \( 1 - 0.826iT - 27T^{2} \) |
| 5 | \( 1 + 5.17T + 125T^{2} \) |
| 11 | \( 1 - 51.1iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 79.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 111.T + 4.91e3T^{2} \) |
| 19 | \( 1 - 73.3T + 6.85e3T^{2} \) |
| 29 | \( 1 - 25.0T + 2.43e4T^{2} \) |
| 31 | \( 1 + 246. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 207. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 185. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 455. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 298. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 614. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 583. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 63.2T + 2.26e5T^{2} \) |
| 67 | \( 1 - 258. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 548.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 864. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 499. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 513.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 580.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 206.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.65147615461397412528155490641, −11.51311049742474512158368944641, −10.06670884801565476933069578209, −9.689331288693066489414193283730, −7.79678799250588691855671979818, −7.65198663314995625088736714307, −5.45423354891565423337384081291, −4.60023170606183794007552833858, −3.51936070870321416411205667330, −1.05446536838679007736306464843,
1.19442235620439102714448981641, 3.47332585901558098882237999977, 4.63119556598245536997591437332, 5.69933781088549968220120496674, 7.26755183739099746942424061906, 8.416902010027509854750027305558, 9.160431007278312542619880726123, 10.43718648604952277115849082269, 11.82611710217535255804835830504, 12.20464280360728296978642386647