L(s) = 1 | + (−2.59 − 4.49i)2-s + (−3.54 + 6.13i)3-s + (−9.44 + 16.3i)4-s + (2.19 + 3.80i)5-s + 36.7·6-s + (−4.74 + 17.9i)7-s + 56.4·8-s + (−11.5 − 20.0i)9-s + (11.4 − 19.7i)10-s + (4.40 − 7.63i)11-s + (−66.9 − 115. i)12-s + 4.71·13-s + (92.6 − 25.1i)14-s − 31.1·15-s + (−70.8 − 122. i)16-s + (−66.9 + 115. i)17-s + ⋯ |
L(s) = 1 | + (−0.916 − 1.58i)2-s + (−0.681 + 1.18i)3-s + (−1.18 + 2.04i)4-s + (0.196 + 0.340i)5-s + 2.49·6-s + (−0.255 + 0.966i)7-s + 2.49·8-s + (−0.429 − 0.743i)9-s + (0.360 − 0.624i)10-s + (0.120 − 0.209i)11-s + (−1.60 − 2.78i)12-s + 0.100·13-s + (1.76 − 0.479i)14-s − 0.536·15-s + (−1.10 − 1.91i)16-s + (−0.954 + 1.65i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.948−0.316i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(−0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.948−0.316i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), −0.948−0.316i)
|
Particular Values
L(2) |
≈ |
0.0221339+0.136185i |
L(21) |
≈ |
0.0221339+0.136185i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(4.74−17.9i)T |
| 23 | 1+(−11.5−19.9i)T |
good | 2 | 1+(2.59+4.49i)T+(−4+6.92i)T2 |
| 3 | 1+(3.54−6.13i)T+(−13.5−23.3i)T2 |
| 5 | 1+(−2.19−3.80i)T+(−62.5+108.i)T2 |
| 11 | 1+(−4.40+7.63i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−4.71T+2.19e3T2 |
| 17 | 1+(66.9−115.i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(48.9+84.6i)T+(−3.42e3+5.94e3i)T2 |
| 29 | 1−103.T+2.43e4T2 |
| 31 | 1+(27.6−47.8i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(74.5+129.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+369.T+6.89e4T2 |
| 43 | 1+34.6T+7.95e4T2 |
| 47 | 1+(−78.9−136.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−381.+660.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(279.−483.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(453.+786.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(50.8−87.9i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+430.T+3.57e5T2 |
| 73 | 1+(−230.+399.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(−153.−265.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−42.8T+5.71e5T2 |
| 89 | 1+(114.+199.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−678.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.39967922184705208763244403618, −11.45498780687599715149846870782, −10.70877754144381023518454982715, −10.18699420169044939592345741178, −9.078132512239341226818382888970, −8.499169567462399196424419302199, −6.33916266723967675368999076772, −4.74259633517986736307852167028, −3.53549485911125709539297631958, −2.16337426600112317519689004612,
0.10551306270422632775040078033, 1.27401740972791194081424457866, 4.75181416801699845294420809244, 5.98596579853347576740230887508, 6.90770405606662936522609292491, 7.34868700025308700492956017285, 8.546817443962706853864920394942, 9.620390941888289279133649051081, 10.69965823131721211360176085496, 12.06202178504834168133024065855