L(s) = 1 | + (−2.59 − 4.49i)2-s + (−3.54 + 6.13i)3-s + (−9.44 + 16.3i)4-s + (2.19 + 3.80i)5-s + 36.7·6-s + (−4.74 + 17.9i)7-s + 56.4·8-s + (−11.5 − 20.0i)9-s + (11.4 − 19.7i)10-s + (4.40 − 7.63i)11-s + (−66.9 − 115. i)12-s + 4.71·13-s + (92.6 − 25.1i)14-s − 31.1·15-s + (−70.8 − 122. i)16-s + (−66.9 + 115. i)17-s + ⋯ |
L(s) = 1 | + (−0.916 − 1.58i)2-s + (−0.681 + 1.18i)3-s + (−1.18 + 2.04i)4-s + (0.196 + 0.340i)5-s + 2.49·6-s + (−0.255 + 0.966i)7-s + 2.49·8-s + (−0.429 − 0.743i)9-s + (0.360 − 0.624i)10-s + (0.120 − 0.209i)11-s + (−1.60 − 2.78i)12-s + 0.100·13-s + (1.76 − 0.479i)14-s − 0.536·15-s + (−1.10 − 1.91i)16-s + (−0.954 + 1.65i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0221339 + 0.136185i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0221339 + 0.136185i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (4.74 - 17.9i)T \) |
| 23 | \( 1 + (-11.5 - 19.9i)T \) |
good | 2 | \( 1 + (2.59 + 4.49i)T + (-4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (3.54 - 6.13i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (-2.19 - 3.80i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-4.40 + 7.63i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 4.71T + 2.19e3T^{2} \) |
| 17 | \( 1 + (66.9 - 115. i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (48.9 + 84.6i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 29 | \( 1 - 103.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (27.6 - 47.8i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (74.5 + 129. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 369.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 34.6T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-78.9 - 136. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-381. + 660. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (279. - 483. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (453. + 786. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (50.8 - 87.9i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 430.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-230. + 399. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-153. - 265. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 42.8T + 5.71e5T^{2} \) |
| 89 | \( 1 + (114. + 199. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 678.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.39967922184705208763244403618, −11.45498780687599715149846870782, −10.70877754144381023518454982715, −10.18699420169044939592345741178, −9.078132512239341226818382888970, −8.499169567462399196424419302199, −6.33916266723967675368999076772, −4.74259633517986736307852167028, −3.53549485911125709539297631958, −2.16337426600112317519689004612,
0.10551306270422632775040078033, 1.27401740972791194081424457866, 4.75181416801699845294420809244, 5.98596579853347576740230887508, 6.90770405606662936522609292491, 7.34868700025308700492956017285, 8.546817443962706853864920394942, 9.620390941888289279133649051081, 10.69965823131721211360176085496, 12.06202178504834168133024065855