L(s) = 1 | + (1.15 + 2.00i)2-s + (−4.37 + 7.57i)3-s + (1.32 − 2.28i)4-s + (7.70 + 13.3i)5-s − 20.2·6-s + (2.31 + 18.3i)7-s + 24.6·8-s + (−24.7 − 42.8i)9-s + (−17.8 + 30.9i)10-s + (−24.3 + 42.2i)11-s + (11.5 + 19.9i)12-s + 53.5·13-s + (−34.1 + 25.9i)14-s − 134.·15-s + (17.9 + 31.0i)16-s + (42.8 − 74.3i)17-s + ⋯ |
L(s) = 1 | + (0.409 + 0.708i)2-s + (−0.841 + 1.45i)3-s + (0.165 − 0.285i)4-s + (0.689 + 1.19i)5-s − 1.37·6-s + (0.125 + 0.992i)7-s + 1.08·8-s + (−0.915 − 1.58i)9-s + (−0.564 + 0.977i)10-s + (−0.668 + 1.15i)11-s + (0.277 + 0.480i)12-s + 1.14·13-s + (−0.652 + 0.494i)14-s − 2.32·15-s + (0.280 + 0.485i)16-s + (0.612 − 1.06i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.998+0.0620i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(−0.998+0.0620i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.998+0.0620i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), −0.998+0.0620i)
|
Particular Values
L(2) |
≈ |
0.0594771−1.91498i |
L(21) |
≈ |
0.0594771−1.91498i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−2.31−18.3i)T |
| 23 | 1+(−11.5−19.9i)T |
good | 2 | 1+(−1.15−2.00i)T+(−4+6.92i)T2 |
| 3 | 1+(4.37−7.57i)T+(−13.5−23.3i)T2 |
| 5 | 1+(−7.70−13.3i)T+(−62.5+108.i)T2 |
| 11 | 1+(24.3−42.2i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−53.5T+2.19e3T2 |
| 17 | 1+(−42.8+74.3i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(64.1+111.i)T+(−3.42e3+5.94e3i)T2 |
| 29 | 1+133.T+2.43e4T2 |
| 31 | 1+(−41.4+71.8i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(27.1+47.0i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−475.T+6.89e4T2 |
| 43 | 1+146.T+7.95e4T2 |
| 47 | 1+(−261.−453.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−135.+235.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(87.0−150.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−225.−389.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(297.−515.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−438.T+3.57e5T2 |
| 73 | 1+(300.−520.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(435.+755.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−229.T+5.71e5T2 |
| 89 | 1+(501.+868.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−1.55e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.11023959510334433672216845043, −11.45854117721217493278345698703, −10.86438163870728398642358072515, −10.05958089755585207204374564864, −9.223933552137216810980496440032, −7.24320520928646031003741915670, −6.11106795951858242435189952912, −5.48939597669704843438287145723, −4.46829978885398160739982867814, −2.57819913427835631728047272779,
0.940729231782780909445014866902, 1.75305631700973701653147815684, 3.81823586870699581931226354216, 5.46459343831939300121000614412, 6.30723993109545275175380568943, 7.79101405133463191581034000068, 8.401771954803520521069399783689, 10.49909816989197243721550633467, 11.04589278159378544614560295446, 12.22199167858069696057840394272