L(s) = 1 | + (2.08 + 3.61i)2-s + (3.80 − 6.59i)3-s + (−4.70 + 8.15i)4-s + (−1.49 − 2.59i)5-s + 31.8·6-s + (1.97 − 18.4i)7-s − 5.91·8-s + (−15.5 − 26.9i)9-s + (6.24 − 10.8i)10-s + (27.0 − 46.7i)11-s + (35.8 + 62.1i)12-s − 50.0·13-s + (70.6 − 31.2i)14-s − 22.7·15-s + (25.3 + 43.8i)16-s + (−16.4 + 28.4i)17-s + ⋯ |
L(s) = 1 | + (0.737 + 1.27i)2-s + (0.733 − 1.26i)3-s + (−0.588 + 1.01i)4-s + (−0.133 − 0.231i)5-s + 2.16·6-s + (0.106 − 0.994i)7-s − 0.261·8-s + (−0.575 − 0.996i)9-s + (0.197 − 0.341i)10-s + (0.740 − 1.28i)11-s + (0.863 + 1.49i)12-s − 1.06·13-s + (1.34 − 0.597i)14-s − 0.392·15-s + (0.395 + 0.685i)16-s + (−0.234 + 0.406i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(0.985+0.169i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(0.985+0.169i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.985+0.169i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), 0.985+0.169i)
|
Particular Values
L(2) |
≈ |
3.06510−0.261821i |
L(21) |
≈ |
3.06510−0.261821i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−1.97+18.4i)T |
| 23 | 1+(−11.5−19.9i)T |
good | 2 | 1+(−2.08−3.61i)T+(−4+6.92i)T2 |
| 3 | 1+(−3.80+6.59i)T+(−13.5−23.3i)T2 |
| 5 | 1+(1.49+2.59i)T+(−62.5+108.i)T2 |
| 11 | 1+(−27.0+46.7i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+50.0T+2.19e3T2 |
| 17 | 1+(16.4−28.4i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(−40.6−70.4i)T+(−3.42e3+5.94e3i)T2 |
| 29 | 1−244.T+2.43e4T2 |
| 31 | 1+(90.7−157.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(−131.−227.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+442.T+6.89e4T2 |
| 43 | 1+194.T+7.95e4T2 |
| 47 | 1+(−167.−289.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−139.+240.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(43.8−75.9i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(97.4+168.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−304.+526.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+890.T+3.57e5T2 |
| 73 | 1+(250.−433.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(−323.−560.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−94.1T+5.71e5T2 |
| 89 | 1+(−325.−563.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−968.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.81740959460830774355541995192, −11.90826085016943756390164926448, −10.32202127510183059701123287696, −8.545710490812626988200113512678, −7.972180031900628505161106505258, −6.97533280217612585389058364310, −6.33861564022398046587583935177, −4.78891836134948334685263736394, −3.37197412523759804357971265840, −1.21995430252630831343713051233,
2.23082636346589063586961494726, 3.13522292194602744834523954897, 4.43794807541020757959538469419, 5.06025595759102783140474927124, 7.21226682674082754145299992873, 8.944622023780925961520543642654, 9.632543087765998692411576436615, 10.39240452562517051669601557708, 11.62889525425318494011236629271, 12.16479081425769103923966825800