L(s) = 1 | + (2.42 + 4.19i)2-s + (−4.52 + 7.83i)3-s + (−7.73 + 13.3i)4-s + (−7.08 − 12.2i)5-s − 43.8·6-s + (17.4 − 6.30i)7-s − 36.1·8-s + (−27.4 − 47.5i)9-s + (34.2 − 59.4i)10-s + (−24.1 + 41.8i)11-s + (−69.9 − 121. i)12-s − 21.7·13-s + (68.6 + 57.7i)14-s + 128.·15-s + (−25.6 − 44.4i)16-s + (−54.5 + 94.5i)17-s + ⋯ |
L(s) = 1 | + (0.856 + 1.48i)2-s + (−0.870 + 1.50i)3-s + (−0.966 + 1.67i)4-s + (−0.633 − 1.09i)5-s − 2.98·6-s + (0.940 − 0.340i)7-s − 1.59·8-s + (−1.01 − 1.75i)9-s + (1.08 − 1.87i)10-s + (−0.661 + 1.14i)11-s + (−1.68 − 2.91i)12-s − 0.464·13-s + (1.30 + 1.10i)14-s + 2.20·15-s + (−0.401 − 0.694i)16-s + (−0.778 + 1.34i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(0.279+0.960i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(0.279+0.960i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.279+0.960i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), 0.279+0.960i)
|
Particular Values
L(2) |
≈ |
0.653339−0.490026i |
L(21) |
≈ |
0.653339−0.490026i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−17.4+6.30i)T |
| 23 | 1+(−11.5−19.9i)T |
good | 2 | 1+(−2.42−4.19i)T+(−4+6.92i)T2 |
| 3 | 1+(4.52−7.83i)T+(−13.5−23.3i)T2 |
| 5 | 1+(7.08+12.2i)T+(−62.5+108.i)T2 |
| 11 | 1+(24.1−41.8i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+21.7T+2.19e3T2 |
| 17 | 1+(54.5−94.5i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(59.9+103.i)T+(−3.42e3+5.94e3i)T2 |
| 29 | 1−85.5T+2.43e4T2 |
| 31 | 1+(−36.8+63.8i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(−127.−220.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+108.T+6.89e4T2 |
| 43 | 1+447.T+7.95e4T2 |
| 47 | 1+(−25.3−43.8i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(310.−538.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−234.+406.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(87.0+150.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(138.−239.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−77.7T+3.57e5T2 |
| 73 | 1+(433.−750.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(−197.−342.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+207.T+5.71e5T2 |
| 89 | 1+(−494.−856.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+1.13e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.24387976961324709628834258082, −12.39392607398430717951566130140, −11.31363901566550549101054800499, −10.20645367643904643034023959383, −8.798235302636033032717058771793, −7.971033605132359105381519440996, −6.58622772076960866956139131054, −5.15064927672222944332523774315, −4.64909306679849075586810683922, −4.19652640848887627645793995794,
0.31578639625973095296821880056, 1.96147358028849628302844177379, 3.01491626670708281082775994472, 4.85555270286815958624898500393, 5.94352884051044092382264916473, 7.20262312604261990252893198156, 8.288087698340973419873347331220, 10.43802169213185799753571741648, 11.18187515503977593521293637386, 11.61006625232740220536765120100