L(s) = 1 | + (2.42 + 4.19i)2-s + (−4.52 + 7.83i)3-s + (−7.73 + 13.3i)4-s + (−7.08 − 12.2i)5-s − 43.8·6-s + (17.4 − 6.30i)7-s − 36.1·8-s + (−27.4 − 47.5i)9-s + (34.2 − 59.4i)10-s + (−24.1 + 41.8i)11-s + (−69.9 − 121. i)12-s − 21.7·13-s + (68.6 + 57.7i)14-s + 128.·15-s + (−25.6 − 44.4i)16-s + (−54.5 + 94.5i)17-s + ⋯ |
L(s) = 1 | + (0.856 + 1.48i)2-s + (−0.870 + 1.50i)3-s + (−0.966 + 1.67i)4-s + (−0.633 − 1.09i)5-s − 2.98·6-s + (0.940 − 0.340i)7-s − 1.59·8-s + (−1.01 − 1.75i)9-s + (1.08 − 1.87i)10-s + (−0.661 + 1.14i)11-s + (−1.68 − 2.91i)12-s − 0.464·13-s + (1.30 + 1.10i)14-s + 2.20·15-s + (−0.401 − 0.694i)16-s + (−0.778 + 1.34i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.279 + 0.960i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.279 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.653339 - 0.490026i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.653339 - 0.490026i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-17.4 + 6.30i)T \) |
| 23 | \( 1 + (-11.5 - 19.9i)T \) |
good | 2 | \( 1 + (-2.42 - 4.19i)T + (-4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (4.52 - 7.83i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (7.08 + 12.2i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (24.1 - 41.8i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 21.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + (54.5 - 94.5i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (59.9 + 103. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 29 | \( 1 - 85.5T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-36.8 + 63.8i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-127. - 220. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 108.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 447.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-25.3 - 43.8i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (310. - 538. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-234. + 406. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (87.0 + 150. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (138. - 239. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 77.7T + 3.57e5T^{2} \) |
| 73 | \( 1 + (433. - 750. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-197. - 342. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 207.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-494. - 856. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.13e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.24387976961324709628834258082, −12.39392607398430717951566130140, −11.31363901566550549101054800499, −10.20645367643904643034023959383, −8.798235302636033032717058771793, −7.971033605132359105381519440996, −6.58622772076960866956139131054, −5.15064927672222944332523774315, −4.64909306679849075586810683922, −4.19652640848887627645793995794,
0.31578639625973095296821880056, 1.96147358028849628302844177379, 3.01491626670708281082775994472, 4.85555270286815958624898500393, 5.94352884051044092382264916473, 7.20262312604261990252893198156, 8.288087698340973419873347331220, 10.43802169213185799753571741648, 11.18187515503977593521293637386, 11.61006625232740220536765120100