L(s) = 1 | + (0.674 − 1.16i)2-s + (3.89 + 6.74i)3-s + (3.08 + 5.35i)4-s + (3.28 − 5.68i)5-s + 10.5·6-s + (14.9 + 10.9i)7-s + 19.1·8-s + (−16.8 + 29.1i)9-s + (−4.43 − 7.67i)10-s + (−20.1 − 34.9i)11-s + (−24.0 + 41.6i)12-s + 33.8·13-s + (22.8 − 10.0i)14-s + 51.1·15-s + (−11.8 + 20.4i)16-s + (−48.0 − 83.3i)17-s + ⋯ |
L(s) = 1 | + (0.238 − 0.413i)2-s + (0.749 + 1.29i)3-s + (0.386 + 0.668i)4-s + (0.293 − 0.508i)5-s + 0.714·6-s + (0.807 + 0.590i)7-s + 0.845·8-s + (−0.622 + 1.07i)9-s + (−0.140 − 0.242i)10-s + (−0.553 − 0.958i)11-s + (−0.578 + 1.00i)12-s + 0.721·13-s + (0.436 − 0.192i)14-s + 0.880·15-s + (−0.184 + 0.319i)16-s + (−0.686 − 1.18i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(0.537−0.842i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(0.537−0.842i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.537−0.842i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), 0.537−0.842i)
|
Particular Values
L(2) |
≈ |
2.59334+1.42152i |
L(21) |
≈ |
2.59334+1.42152i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−14.9−10.9i)T |
| 23 | 1+(−11.5+19.9i)T |
good | 2 | 1+(−0.674+1.16i)T+(−4−6.92i)T2 |
| 3 | 1+(−3.89−6.74i)T+(−13.5+23.3i)T2 |
| 5 | 1+(−3.28+5.68i)T+(−62.5−108.i)T2 |
| 11 | 1+(20.1+34.9i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−33.8T+2.19e3T2 |
| 17 | 1+(48.0+83.3i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(60.7−105.i)T+(−3.42e3−5.94e3i)T2 |
| 29 | 1+173.T+2.43e4T2 |
| 31 | 1+(108.+188.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(−83.5+144.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−12.2T+6.89e4T2 |
| 43 | 1−463.T+7.95e4T2 |
| 47 | 1+(−25.9+45.0i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(340.+589.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(156.+270.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(176.−304.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(380.+659.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+231.T+3.57e5T2 |
| 73 | 1+(−354.−614.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−483.+837.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+185.T+5.71e5T2 |
| 89 | 1+(684.−1.18e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−419.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.62893827598609591816844085109, −11.23239648577201643621145573720, −10.86568849117051752539853675125, −9.369346277633209413094264285716, −8.632678308110454303923624323988, −7.78905709604838881107734367356, −5.69735471433146362475785506581, −4.49882315071961843510796469210, −3.44812805233385238507138618250, −2.18145381692967551969338183233,
1.43869400251047523563165211544, 2.37680812775363862851903572523, 4.54584784771482425131242366736, 6.15313956615447258019189440101, 7.02475044992204292254137600843, 7.69428781587778136693114740890, 8.880999709977507561166345519053, 10.53377557959153544032607472821, 11.04081172414880113948204978023, 12.68069785863097005388254797846