L(s) = 1 | + (−2.21 + 3.83i)2-s + (−4.64 − 8.03i)3-s + (−5.80 − 10.0i)4-s + (−8.69 + 15.0i)5-s + 41.0·6-s + (−7.29 + 17.0i)7-s + 15.9·8-s + (−29.5 + 51.2i)9-s + (−38.5 − 66.7i)10-s + (−5.80 − 10.0i)11-s + (−53.8 + 93.2i)12-s − 43.4·13-s + (−49.1 − 65.6i)14-s + 161.·15-s + (11.1 − 19.2i)16-s + (27.5 + 47.7i)17-s + ⋯ |
L(s) = 1 | + (−0.782 + 1.35i)2-s + (−0.893 − 1.54i)3-s + (−0.725 − 1.25i)4-s + (−0.778 + 1.34i)5-s + 2.79·6-s + (−0.393 + 0.919i)7-s + 0.704·8-s + (−1.09 + 1.89i)9-s + (−1.21 − 2.10i)10-s + (−0.158 − 0.275i)11-s + (−1.29 + 2.24i)12-s − 0.926·13-s + (−0.938 − 1.25i)14-s + 2.78·15-s + (0.173 − 0.300i)16-s + (0.393 + 0.681i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(0.942+0.334i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(0.942+0.334i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.942+0.334i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), 0.942+0.334i)
|
Particular Values
L(2) |
≈ |
0.223200−0.0384518i |
L(21) |
≈ |
0.223200−0.0384518i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(7.29−17.0i)T |
| 23 | 1+(−11.5+19.9i)T |
good | 2 | 1+(2.21−3.83i)T+(−4−6.92i)T2 |
| 3 | 1+(4.64+8.03i)T+(−13.5+23.3i)T2 |
| 5 | 1+(8.69−15.0i)T+(−62.5−108.i)T2 |
| 11 | 1+(5.80+10.0i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+43.4T+2.19e3T2 |
| 17 | 1+(−27.5−47.7i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−40.3+69.8i)T+(−3.42e3−5.94e3i)T2 |
| 29 | 1+55.6T+2.43e4T2 |
| 31 | 1+(120.+208.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(121.−211.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−257.T+6.89e4T2 |
| 43 | 1−142.T+7.95e4T2 |
| 47 | 1+(−321.+556.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−241.−418.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−175.−303.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(172.−298.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−377.−654.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+877.T+3.57e5T2 |
| 73 | 1+(612.+1.06e3i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(110.−190.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−416.T+5.71e5T2 |
| 89 | 1+(−770.+1.33e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−754.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.17150095083762564994086117471, −11.55339637411459652915213319512, −10.34449039277472381432251228107, −8.799656126933134184543522073944, −7.52973066828670495093712781734, −7.28455402369629245581666779020, −6.26910529537574978423923687827, −5.55899991185878296896945613507, −2.64732505038356379379760938663, −0.23526061101613678886231965893,
0.799186309028627392836823046450, 3.49010082805842236499957678395, 4.34872753086072239081410147626, 5.37340996747443438678375571896, 7.63246723690305675268177024860, 9.084188363252221092464312487064, 9.625191237087572855826264394883, 10.44224424145943689411889774344, 11.25781372732219325274850073468, 12.18582227174785526322738523460