L(s) = 1 | + (−2.21 + 3.83i)2-s + (−4.64 − 8.03i)3-s + (−5.80 − 10.0i)4-s + (−8.69 + 15.0i)5-s + 41.0·6-s + (−7.29 + 17.0i)7-s + 15.9·8-s + (−29.5 + 51.2i)9-s + (−38.5 − 66.7i)10-s + (−5.80 − 10.0i)11-s + (−53.8 + 93.2i)12-s − 43.4·13-s + (−49.1 − 65.6i)14-s + 161.·15-s + (11.1 − 19.2i)16-s + (27.5 + 47.7i)17-s + ⋯ |
L(s) = 1 | + (−0.782 + 1.35i)2-s + (−0.893 − 1.54i)3-s + (−0.725 − 1.25i)4-s + (−0.778 + 1.34i)5-s + 2.79·6-s + (−0.393 + 0.919i)7-s + 0.704·8-s + (−1.09 + 1.89i)9-s + (−1.21 − 2.10i)10-s + (−0.158 − 0.275i)11-s + (−1.29 + 2.24i)12-s − 0.926·13-s + (−0.938 − 1.25i)14-s + 2.78·15-s + (0.173 − 0.300i)16-s + (0.393 + 0.681i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 + 0.334i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.942 + 0.334i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.223200 - 0.0384518i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.223200 - 0.0384518i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (7.29 - 17.0i)T \) |
| 23 | \( 1 + (-11.5 + 19.9i)T \) |
good | 2 | \( 1 + (2.21 - 3.83i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (4.64 + 8.03i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + (8.69 - 15.0i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (5.80 + 10.0i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 43.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-27.5 - 47.7i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-40.3 + 69.8i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 29 | \( 1 + 55.6T + 2.43e4T^{2} \) |
| 31 | \( 1 + (120. + 208. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (121. - 211. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 257.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 142.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-321. + 556. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-241. - 418. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-175. - 303. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (172. - 298. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-377. - 654. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 877.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (612. + 1.06e3i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (110. - 190. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 416.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-770. + 1.33e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 754.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.17150095083762564994086117471, −11.55339637411459652915213319512, −10.34449039277472381432251228107, −8.799656126933134184543522073944, −7.52973066828670495093712781734, −7.28455402369629245581666779020, −6.26910529537574978423923687827, −5.55899991185878296896945613507, −2.64732505038356379379760938663, −0.23526061101613678886231965893,
0.799186309028627392836823046450, 3.49010082805842236499957678395, 4.34872753086072239081410147626, 5.37340996747443438678375571896, 7.63246723690305675268177024860, 9.084188363252221092464312487064, 9.625191237087572855826264394883, 10.44224424145943689411889774344, 11.25781372732219325274850073468, 12.18582227174785526322738523460