Properties

Label 2-161-161.10-c3-0-19
Degree $2$
Conductor $161$
Sign $0.0922 - 0.995i$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.249 − 0.722i)2-s + (3.86 + 7.49i)3-s + (5.82 + 4.58i)4-s + (0.997 − 0.0952i)5-s + (6.38 − 0.917i)6-s + (9.73 + 15.7i)7-s + (9.91 − 6.36i)8-s + (−25.5 + 35.9i)9-s + (0.180 − 0.744i)10-s + (31.3 − 10.8i)11-s + (−11.8 + 61.4i)12-s + (−23.6 − 80.4i)13-s + (13.8 − 3.09i)14-s + (4.56 + 7.10i)15-s + (11.8 + 48.9i)16-s + (−34.1 − 13.6i)17-s + ⋯
L(s)  = 1  + (0.0883 − 0.255i)2-s + (0.743 + 1.44i)3-s + (0.728 + 0.573i)4-s + (0.0892 − 0.00852i)5-s + (0.434 − 0.0624i)6-s + (0.525 + 0.850i)7-s + (0.438 − 0.281i)8-s + (−0.948 + 1.33i)9-s + (0.00571 − 0.0235i)10-s + (0.859 − 0.297i)11-s + (−0.284 + 1.47i)12-s + (−0.503 − 1.71i)13-s + (0.263 − 0.0590i)14-s + (0.0786 + 0.122i)15-s + (0.185 + 0.764i)16-s + (−0.487 − 0.195i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0922 - 0.995i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0922 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $0.0922 - 0.995i$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{161} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 0.0922 - 0.995i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.06310 + 1.88079i\)
\(L(\frac12)\) \(\approx\) \(2.06310 + 1.88079i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-9.73 - 15.7i)T \)
23 \( 1 + (87.4 + 67.1i)T \)
good2 \( 1 + (-0.249 + 0.722i)T + (-6.28 - 4.94i)T^{2} \)
3 \( 1 + (-3.86 - 7.49i)T + (-15.6 + 21.9i)T^{2} \)
5 \( 1 + (-0.997 + 0.0952i)T + (122. - 23.6i)T^{2} \)
11 \( 1 + (-31.3 + 10.8i)T + (1.04e3 - 822. i)T^{2} \)
13 \( 1 + (23.6 + 80.4i)T + (-1.84e3 + 1.18e3i)T^{2} \)
17 \( 1 + (34.1 + 13.6i)T + (3.55e3 + 3.39e3i)T^{2} \)
19 \( 1 + (-9.27 + 3.71i)T + (4.96e3 - 4.73e3i)T^{2} \)
29 \( 1 + (3.51 + 24.4i)T + (-2.34e4 + 6.87e3i)T^{2} \)
31 \( 1 + (-187. + 8.93i)T + (2.96e4 - 2.83e3i)T^{2} \)
37 \( 1 + (95.6 + 68.1i)T + (1.65e4 + 4.78e4i)T^{2} \)
41 \( 1 + (-211. - 96.6i)T + (4.51e4 + 5.20e4i)T^{2} \)
43 \( 1 + (200. - 311. i)T + (-3.30e4 - 7.23e4i)T^{2} \)
47 \( 1 + (-437. + 252. i)T + (5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (179. + 188. i)T + (-7.08e3 + 1.48e5i)T^{2} \)
59 \( 1 + (-554. - 134. i)T + (1.82e5 + 9.41e4i)T^{2} \)
61 \( 1 + (592. + 305. i)T + (1.31e5 + 1.84e5i)T^{2} \)
67 \( 1 + (113. + 589. i)T + (-2.79e5 + 1.11e5i)T^{2} \)
71 \( 1 + (670. + 773. i)T + (-5.09e4 + 3.54e5i)T^{2} \)
73 \( 1 + (-99.1 + 126. i)T + (-9.17e4 - 3.78e5i)T^{2} \)
79 \( 1 + (539. - 565. i)T + (-2.34e4 - 4.92e5i)T^{2} \)
83 \( 1 + (-488. - 1.06e3i)T + (-3.74e5 + 4.32e5i)T^{2} \)
89 \( 1 + (-29.5 + 620. i)T + (-7.01e5 - 6.70e4i)T^{2} \)
97 \( 1 + (-360. + 789. i)T + (-5.97e5 - 6.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.44275201368276307727113184659, −11.54433321661917620493317464732, −10.58618557420411880212225771475, −9.693303352544913656703485023222, −8.571865556053714500478178932267, −7.83239955627109378155205122755, −5.99370421585790752480405227335, −4.61884299983145807228458019579, −3.39357083462486222732867435788, −2.39918849989990557266148305776, 1.38046649086326752506920365655, 2.15731022257596772718110298322, 4.25521724126492846750100790193, 6.17876296480878245259441872438, 7.02481342154480418469219180321, 7.56988586750116894185552153888, 8.886575795073330588153494876026, 10.11337190583088221968124087922, 11.58735791178587412592161144687, 12.00908431436539208668842138788

Graph of the $Z$-function along the critical line