L(s) = 1 | + (−0.973 − 0.230i)2-s + (1.56 − 0.739i)3-s + (0.893 + 0.448i)4-s + (0.149 − 0.201i)5-s + (−1.69 + 0.358i)6-s + (1.83 + 1.20i)7-s + (−0.766 − 0.642i)8-s + (1.90 − 2.31i)9-s + (−0.192 + 0.161i)10-s + (−1.53 + 0.179i)11-s + (1.73 + 0.0416i)12-s + (−0.160 + 0.536i)13-s + (−1.51 − 1.60i)14-s + (0.0858 − 0.426i)15-s + (0.597 + 0.802i)16-s + (−0.434 − 2.46i)17-s + ⋯ |
L(s) = 1 | + (−0.688 − 0.163i)2-s + (0.904 − 0.427i)3-s + (0.446 + 0.224i)4-s + (0.0670 − 0.0900i)5-s + (−0.691 + 0.146i)6-s + (0.695 + 0.457i)7-s + (−0.270 − 0.227i)8-s + (0.635 − 0.772i)9-s + (−0.0608 + 0.0510i)10-s + (−0.463 + 0.0541i)11-s + (0.499 + 0.0120i)12-s + (−0.0445 + 0.148i)13-s + (−0.403 − 0.428i)14-s + (0.0221 − 0.110i)15-s + (0.149 + 0.200i)16-s + (−0.105 − 0.597i)17-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.866+0.499i)Λ(2−s)
Λ(s)=(=(162s/2ΓC(s+1/2)L(s)(0.866+0.499i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.866+0.499i
|
Analytic conductor: |
1.29357 |
Root analytic conductor: |
1.13735 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(97,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :1/2), 0.866+0.499i)
|
Particular Values
L(1) |
≈ |
1.11495−0.298357i |
L(21) |
≈ |
1.11495−0.298357i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.973+0.230i)T |
| 3 | 1+(−1.56+0.739i)T |
good | 5 | 1+(−0.149+0.201i)T+(−1.43−4.78i)T2 |
| 7 | 1+(−1.83−1.20i)T+(2.77+6.42i)T2 |
| 11 | 1+(1.53−0.179i)T+(10.7−2.53i)T2 |
| 13 | 1+(0.160−0.536i)T+(−10.8−7.14i)T2 |
| 17 | 1+(0.434+2.46i)T+(−15.9+5.81i)T2 |
| 19 | 1+(−0.461+2.61i)T+(−17.8−6.49i)T2 |
| 23 | 1+(−0.530+0.349i)T+(9.10−21.1i)T2 |
| 29 | 1+(4.73−5.01i)T+(−1.68−28.9i)T2 |
| 31 | 1+(−0.0928−1.59i)T+(−30.7+3.59i)T2 |
| 37 | 1+(9.81+3.57i)T+(28.3+23.7i)T2 |
| 41 | 1+(7.44−1.76i)T+(36.6−18.4i)T2 |
| 43 | 1+(3.30−7.65i)T+(−29.5−31.2i)T2 |
| 47 | 1+(0.468−8.04i)T+(−46.6−5.45i)T2 |
| 53 | 1+(−3.36−5.83i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−8.40−0.982i)T+(57.4+13.6i)T2 |
| 61 | 1+(−0.457+0.229i)T+(36.4−48.9i)T2 |
| 67 | 1+(5.52+5.85i)T+(−3.89+66.8i)T2 |
| 71 | 1+(−12.2+10.2i)T+(12.3−69.9i)T2 |
| 73 | 1+(10.6+8.90i)T+(12.6+71.8i)T2 |
| 79 | 1+(−15.0−3.56i)T+(70.5+35.4i)T2 |
| 83 | 1+(7.27+1.72i)T+(74.1+37.2i)T2 |
| 89 | 1+(−11.9−10.0i)T+(15.4+87.6i)T2 |
| 97 | 1+(9.83+13.2i)T+(−27.8+92.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.76325902971017274827917315852, −11.76831997518847206490585808245, −10.72375237403623160788775920009, −9.405755854401616291273359642971, −8.764053803992048045040668713083, −7.74962537058962419725020606305, −6.85296990276714644681684812963, −5.07918891841439800711107696594, −3.16323106380685883668107451132, −1.77024750012067989821083313495,
2.03934956695346106728769090903, 3.76489310020126840729830417693, 5.26695245496582049391488325955, 6.98437882859923122776251947180, 8.061048998319594800040307786201, 8.641827704773554398570741530554, 10.04896326122633187178464334709, 10.48189804282574824491389037176, 11.74149003639693877213214753275, 13.17344736393031605639211900366