L(s) = 1 | + 2·4-s + 8·7-s − 16·13-s − 64·19-s − 32·25-s + 16·28-s − 88·31-s − 136·37-s + 80·43-s + 114·49-s − 32·52-s − 100·61-s − 8·64-s − 16·67-s − 64·73-s − 128·76-s + 152·79-s − 128·91-s − 352·97-s − 64·100-s + 56·103-s + 224·109-s + 46·121-s − 176·124-s + 127-s + 131-s − 512·133-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 8/7·7-s − 1.23·13-s − 3.36·19-s − 1.27·25-s + 4/7·28-s − 2.83·31-s − 3.67·37-s + 1.86·43-s + 2.32·49-s − 0.615·52-s − 1.63·61-s − 1/8·64-s − 0.238·67-s − 0.876·73-s − 1.68·76-s + 1.92·79-s − 1.40·91-s − 3.62·97-s − 0.639·100-s + 0.543·103-s + 2.05·109-s + 0.380·121-s − 1.41·124-s + 0.00787·127-s + 0.00763·131-s − 3.84·133-s + ⋯ |
Λ(s)=(=((24⋅316)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((24⋅316)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅316
|
Sign: |
1
|
Analytic conductor: |
379.664 |
Root analytic conductor: |
2.10099 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅316, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.6251787185 |
L(21) |
≈ |
0.6251787185 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1−pT2+p2T4 |
| 3 | | 1 |
good | 5 | C23 | 1+32T2+399T4+32p4T6+p8T8 |
| 7 | C22 | (1−4T−33T2−4p2T3+p4T4)2 |
| 11 | C22×C22 | (1−14T+75T2−14p2T3+p4T4)(1+14T+75T2+14p2T3+p4T4) |
| 13 | C22 | (1+8T−105T2+8p2T3+p4T4)2 |
| 17 | C22 | (1−416T2+p4T4)2 |
| 19 | C2 | (1+16T+p2T2)4 |
| 23 | C23 | 1+770T2+313059T4+770p4T6+p8T8 |
| 29 | C23 | 1+1664T2+2061615T4+1664p4T6+p8T8 |
| 31 | C22 | (1+44T+975T2+44p2T3+p4T4)2 |
| 37 | C2 | (1+34T+p2T2)4 |
| 41 | C23 | 1+1184T2−1423905T4+1184p4T6+p8T8 |
| 43 | C22 | (1−40T−249T2−40p2T3+p4T4)2 |
| 47 | C23 | 1−2782T2+2859843T4−2782p4T6+p8T8 |
| 53 | C22 | (1−4160T2+p4T4)2 |
| 59 | C23 | 1+5810T2+21638739T4+5810p4T6+p8T8 |
| 61 | C22 | (1+50T−1221T2+50p2T3+p4T4)2 |
| 67 | C22 | (1+8T−4425T2+8p2T3+p4T4)2 |
| 71 | C22 | (1−7490T2+p4T4)2 |
| 73 | C2 | (1+16T+p2T2)4 |
| 79 | C22 | (1−76T−465T2−76p2T3+p4T4)2 |
| 83 | C23 | 1−334T2−47346765T4−334p4T6+p8T8 |
| 89 | C22 | (1−15680T2+p4T4)2 |
| 97 | C22 | (1+176T+21567T2+176p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.110434110478828292079559110806, −8.727287624815488222493534994112, −8.717374288428360639008742618293, −8.526418836284378476621410743676, −8.056280778261669263405040850989, −7.81796861014634595473043464083, −7.44075688452594573551872043750, −7.20640416515618152299617012085, −7.00257818445030685737589840380, −6.90486468172323226368728828864, −6.20889367143516985852749912517, −6.07535911693213322830452563462, −5.66453604210382631405591824341, −5.52392317562612939667571792801, −4.97318677650644879623271920543, −4.82377070063963437675771575990, −4.33724813874447706699116597336, −3.98989440783965587342884810830, −3.85086579071850667810935227774, −3.28770246934692631876822675452, −2.62272613116582676311546725858, −2.16674850045852790685693800677, −1.79964609406910535143879502568, −1.79877935892192256795035608831, −0.24015488036411555722703447758,
0.24015488036411555722703447758, 1.79877935892192256795035608831, 1.79964609406910535143879502568, 2.16674850045852790685693800677, 2.62272613116582676311546725858, 3.28770246934692631876822675452, 3.85086579071850667810935227774, 3.98989440783965587342884810830, 4.33724813874447706699116597336, 4.82377070063963437675771575990, 4.97318677650644879623271920543, 5.52392317562612939667571792801, 5.66453604210382631405591824341, 6.07535911693213322830452563462, 6.20889367143516985852749912517, 6.90486468172323226368728828864, 7.00257818445030685737589840380, 7.20640416515618152299617012085, 7.44075688452594573551872043750, 7.81796861014634595473043464083, 8.056280778261669263405040850989, 8.526418836284378476621410743676, 8.717374288428360639008742618293, 8.727287624815488222493534994112, 9.110434110478828292079559110806