L(s) = 1 | + 32·4-s − 778·7-s − 2.83e3·13-s − 1.22e4·19-s − 2.94e4·25-s − 2.48e4·28-s + 2.26e4·31-s + 1.88e5·37-s − 2.90e5·43-s + 3.86e5·49-s − 9.05e4·52-s + 7.00e5·61-s − 3.27e4·64-s − 2.40e5·67-s + 7.00e5·73-s − 3.92e5·76-s + 5.04e5·79-s + 2.20e6·91-s + 2.59e6·97-s − 9.42e5·100-s + 3.14e6·103-s − 1.94e6·109-s + 7.78e5·121-s + 7.25e5·124-s + 127-s + 131-s + 9.54e6·133-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 2.26·7-s − 1.28·13-s − 1.78·19-s − 1.88·25-s − 1.13·28-s + 0.761·31-s + 3.72·37-s − 3.65·43-s + 3.28·49-s − 0.644·52-s + 3.08·61-s − 1/8·64-s − 0.800·67-s + 1.80·73-s − 0.894·76-s + 1.02·79-s + 2.92·91-s + 2.84·97-s − 0.942·100-s + 2.87·103-s − 1.50·109-s + 0.439·121-s + 0.380·124-s + 4.05·133-s + ⋯ |
Λ(s)=(=((24⋅316)s/2ΓC(s)4L(s)Λ(7−s)
Λ(s)=(=((24⋅316)s/2ΓC(s+3)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅316
|
Sign: |
1
|
Analytic conductor: |
1.92921×106 |
Root analytic conductor: |
6.10481 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅316, ( :3,3,3,3), 1)
|
Particular Values
L(27) |
≈ |
3.168032602 |
L(21) |
≈ |
3.168032602 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1−p5T2+p10T4 |
| 3 | | 1 |
good | 5 | C23 | 1+1178p2T2+997059p4T4+1178p14T6+p24T8 |
| 7 | C22 | (1+389T+33672T2+389p6T3+p12T4)2 |
| 11 | C23 | 1−778678T2−2532088949037T4−778678p12T6+p24T8 |
| 13 | C22 | (1+1415T−2824584T2+1415p6T3+p12T4)2 |
| 17 | C22 | (1−42670586T2+p12T4)2 |
| 19 | C2 | (1+3067T+p6T2)4 |
| 23 | C23 | 1−142126630T2−1714645476863421T4−142126630p12T6+p24T8 |
| 29 | C23 | 1+1021981970T2+690632363799611859T4+1021981970p12T6+p24T8 |
| 31 | C22 | (1−11338T−758953437T2−11338p6T3+p12T4)2 |
| 37 | C2 | (1−47135T+p6T2)4 |
| 41 | C23 | 1+9461839682T2+66962919867503675043T4+9461839682p12T6+p24T8 |
| 43 | C22 | (1+145118T+14737870875T2+145118p6T3+p12T4)2 |
| 47 | C23 | 1−10908185542T2+2797028709749255523T4−10908185542p12T6+p24T8 |
| 53 | C22 | (1+26326193614T2+p12T4)2 |
| 59 | C23 | 1−46491888310T2+38⋯19T4−46491888310p12T6+p24T8 |
| 61 | C22 | (1−350305T+71193218664T2−350305p6T3+p12T4)2 |
| 67 | C22 | (1+120341T−75976425888T2+120341p6T3+p12T4)2 |
| 71 | C22 | (1−143908067234T2+p12T4)2 |
| 73 | C2 | (1−175151T+p6T2)4 |
| 79 | C22 | (1−252259T−179452852440T2−252259p6T3+p12T4)2 |
| 83 | C23 | 1+538899522770T2+18⋯39T4+538899522770p12T6+p24T8 |
| 89 | C22 | (1−369908068250T2+p12T4)2 |
| 97 | C22 | (1−1297105T+849509376096T2−1297105p6T3+p12T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.269889735291045762230086643138, −7.87306648449285120418418752146, −7.76536008061516214933571673696, −7.45311202219600358563901303880, −7.04708889338972959874146853795, −6.64968907469612463304456867717, −6.59109296226721769883920424313, −6.35889275018337499515132976036, −6.19352439112723331060588994263, −5.78155084453566623193421527522, −5.42230522924932487145231378923, −5.17834425596388211360321444792, −4.54805280720455047325942465188, −4.36704602584447569112308818743, −4.17198463795152821356581411196, −3.60018349874754483592120738510, −3.28166674042004454450124813041, −3.17640183575700694616864634103, −2.46044921420821258752194530509, −2.42377009916850530940366122988, −1.98862649485580996682960395134, −1.77142665621155530444265273022, −0.69574310441265592074250664980, −0.48689087649009089066923298043, −0.46420448697845816662695662212,
0.46420448697845816662695662212, 0.48689087649009089066923298043, 0.69574310441265592074250664980, 1.77142665621155530444265273022, 1.98862649485580996682960395134, 2.42377009916850530940366122988, 2.46044921420821258752194530509, 3.17640183575700694616864634103, 3.28166674042004454450124813041, 3.60018349874754483592120738510, 4.17198463795152821356581411196, 4.36704602584447569112308818743, 4.54805280720455047325942465188, 5.17834425596388211360321444792, 5.42230522924932487145231378923, 5.78155084453566623193421527522, 6.19352439112723331060588994263, 6.35889275018337499515132976036, 6.59109296226721769883920424313, 6.64968907469612463304456867717, 7.04708889338972959874146853795, 7.45311202219600358563901303880, 7.76536008061516214933571673696, 7.87306648449285120418418752146, 8.269889735291045762230086643138