Properties

Label 2-162-1.1-c7-0-7
Degree $2$
Conductor $162$
Sign $1$
Analytic cond. $50.6063$
Root an. cond. $7.11381$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 64·4-s − 206.·5-s + 1.61e3·7-s − 512·8-s + 1.65e3·10-s + 4.67e3·11-s + 6.67e3·13-s − 1.29e4·14-s + 4.09e3·16-s − 2.57e4·17-s + 2.23e4·19-s − 1.32e4·20-s − 3.74e4·22-s + 2.34e4·23-s − 3.54e4·25-s − 5.33e4·26-s + 1.03e5·28-s + 1.62e5·29-s − 2.33e5·31-s − 3.27e4·32-s + 2.05e5·34-s − 3.33e5·35-s + 3.08e5·37-s − 1.79e5·38-s + 1.05e5·40-s − 3.15e5·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.738·5-s + 1.78·7-s − 0.353·8-s + 0.522·10-s + 1.05·11-s + 0.842·13-s − 1.26·14-s + 0.250·16-s − 1.27·17-s + 0.748·19-s − 0.369·20-s − 0.749·22-s + 0.401·23-s − 0.454·25-s − 0.595·26-s + 0.891·28-s + 1.24·29-s − 1.40·31-s − 0.176·32-s + 0.898·34-s − 1.31·35-s + 1.00·37-s − 0.529·38-s + 0.261·40-s − 0.714·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(50.6063\)
Root analytic conductor: \(7.11381\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.774781133\)
\(L(\frac12)\) \(\approx\) \(1.774781133\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 \)
good5 \( 1 + 206.T + 7.81e4T^{2} \)
7 \( 1 - 1.61e3T + 8.23e5T^{2} \)
11 \( 1 - 4.67e3T + 1.94e7T^{2} \)
13 \( 1 - 6.67e3T + 6.27e7T^{2} \)
17 \( 1 + 2.57e4T + 4.10e8T^{2} \)
19 \( 1 - 2.23e4T + 8.93e8T^{2} \)
23 \( 1 - 2.34e4T + 3.40e9T^{2} \)
29 \( 1 - 1.62e5T + 1.72e10T^{2} \)
31 \( 1 + 2.33e5T + 2.75e10T^{2} \)
37 \( 1 - 3.08e5T + 9.49e10T^{2} \)
41 \( 1 + 3.15e5T + 1.94e11T^{2} \)
43 \( 1 + 1.22e5T + 2.71e11T^{2} \)
47 \( 1 + 1.95e5T + 5.06e11T^{2} \)
53 \( 1 + 3.69e5T + 1.17e12T^{2} \)
59 \( 1 + 1.12e6T + 2.48e12T^{2} \)
61 \( 1 - 9.03e4T + 3.14e12T^{2} \)
67 \( 1 - 3.52e6T + 6.06e12T^{2} \)
71 \( 1 + 7.03e5T + 9.09e12T^{2} \)
73 \( 1 - 4.06e6T + 1.10e13T^{2} \)
79 \( 1 - 4.67e6T + 1.92e13T^{2} \)
83 \( 1 - 8.77e6T + 2.71e13T^{2} \)
89 \( 1 - 1.07e7T + 4.42e13T^{2} \)
97 \( 1 - 7.44e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.34644517119591652439680869147, −10.87385812959481115803557566461, −9.253610625503939599589841849155, −8.425397072156784973064910797559, −7.66321959713807052981375622499, −6.49749491836962237844046250964, −4.91359335468457718754695908498, −3.77482282943520464080142625587, −1.90869262921359989314504858860, −0.882709618872004372502140113736, 0.882709618872004372502140113736, 1.90869262921359989314504858860, 3.77482282943520464080142625587, 4.91359335468457718754695908498, 6.49749491836962237844046250964, 7.66321959713807052981375622499, 8.425397072156784973064910797559, 9.253610625503939599589841849155, 10.87385812959481115803557566461, 11.34644517119591652439680869147

Graph of the $Z$-function along the critical line