L(s) = 1 | + (4 + 6.92i)2-s + (−31.9 + 55.4i)4-s + (232. − 403. i)5-s + (24.8 + 43.0i)7-s − 511.·8-s + 3.72e3·10-s + (−151. − 262. i)11-s + (2.75e3 − 4.77e3i)13-s + (−198. + 344. i)14-s + (−2.04e3 − 3.54e3i)16-s − 2.26e4·17-s + 5.28e4·19-s + (1.49e4 + 2.58e4i)20-s + (1.21e3 − 2.09e3i)22-s + (−1.00e4 + 1.73e4i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.833 − 1.44i)5-s + (0.0274 + 0.0474i)7-s − 0.353·8-s + 1.17·10-s + (−0.0343 − 0.0594i)11-s + (0.348 − 0.602i)13-s + (−0.0193 + 0.0335i)14-s + (−0.125 − 0.216i)16-s − 1.11·17-s + 1.76·19-s + (0.416 + 0.721i)20-s + (0.0242 − 0.0420i)22-s + (−0.171 + 0.297i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.173+0.984i)Λ(8−s)
Λ(s)=(=(162s/2ΓC(s+7/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
50.6063 |
Root analytic conductor: |
7.11381 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :7/2), 0.173+0.984i)
|
Particular Values
L(4) |
≈ |
2.131507544 |
L(21) |
≈ |
2.131507544 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4−6.92i)T |
| 3 | 1 |
good | 5 | 1+(−232.+403.i)T+(−3.90e4−6.76e4i)T2 |
| 7 | 1+(−24.8−43.0i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1+(151.+262.i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(−2.75e3+4.77e3i)T+(−3.13e7−5.43e7i)T2 |
| 17 | 1+2.26e4T+4.10e8T2 |
| 19 | 1−5.28e4T+8.93e8T2 |
| 23 | 1+(1.00e4−1.73e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(1.25e5+2.16e5i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+(1.31e5−2.27e5i)T+(−1.37e10−2.38e10i)T2 |
| 37 | 1+4.60e5T+9.49e10T2 |
| 41 | 1+(−1.20e5+2.08e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(2.84e5+4.92e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+(4.37e5+7.57e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1−8.11e5T+1.17e12T2 |
| 59 | 1+(−6.46e5+1.11e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−8.14e5−1.41e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(−9.21e5+1.59e6i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1−4.56e6T+9.09e12T2 |
| 73 | 1+1.91e6T+1.10e13T2 |
| 79 | 1+(−9.05e5−1.56e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(1.54e6+2.67e6i)T+(−1.35e13+2.35e13i)T2 |
| 89 | 1+4.10e6T+4.42e13T2 |
| 97 | 1+(3.95e6+6.85e6i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60634035391090622644214396243, −10.04567303086214086062146217172, −9.069762590116572012713573502214, −8.345956162253071006461662887805, −7.03414948686386863564285974244, −5.58178123144890817411560020757, −5.17317954449258284660878269553, −3.71865726139998912413924850373, −1.88358271253472456898494474782, −0.47440866646466397808550475406,
1.57480960757277150628392523661, 2.65420870713220137846497856502, 3.71699923669772855884839863412, 5.31007376486406484158483537698, 6.42038954446723147936844326471, 7.32150513728083552144010434513, 9.119113201911436154747873160466, 9.908058795167725267443037712660, 10.97122554799296886477292211578, 11.42796803012033589142562193227