L(s) = 1 | + (−4 − 6.92i)2-s + (−31.9 + 55.4i)4-s + (140. − 242. i)5-s + (82.1 + 142. i)7-s + 511.·8-s − 2.24e3·10-s + (1.01e3 + 1.76e3i)11-s + (839. − 1.45e3i)13-s + (657. − 1.13e3i)14-s + (−2.04e3 − 3.54e3i)16-s + 3.16e4·17-s − 1.26e4·19-s + (8.97e3 + 1.55e4i)20-s + (8.15e3 − 1.41e4i)22-s + (−2.47e4 + 4.28e4i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.501 − 0.868i)5-s + (0.0905 + 0.156i)7-s + 0.353·8-s − 0.709·10-s + (0.230 + 0.399i)11-s + (0.105 − 0.183i)13-s + (0.0640 − 0.110i)14-s + (−0.125 − 0.216i)16-s + 1.56·17-s − 0.422·19-s + (0.250 + 0.434i)20-s + (0.163 − 0.282i)22-s + (−0.423 + 0.734i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.642+0.766i)Λ(8−s)
Λ(s)=(=(162s/2ΓC(s+7/2)L(s)(0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.642+0.766i
|
Analytic conductor: |
50.6063 |
Root analytic conductor: |
7.11381 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :7/2), 0.642+0.766i)
|
Particular Values
L(4) |
≈ |
1.968350684 |
L(21) |
≈ |
1.968350684 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(4+6.92i)T |
| 3 | 1 |
good | 5 | 1+(−140.+242.i)T+(−3.90e4−6.76e4i)T2 |
| 7 | 1+(−82.1−142.i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1+(−1.01e3−1.76e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(−839.+1.45e3i)T+(−3.13e7−5.43e7i)T2 |
| 17 | 1−3.16e4T+4.10e8T2 |
| 19 | 1+1.26e4T+8.93e8T2 |
| 23 | 1+(2.47e4−4.28e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(−3.77e3−6.54e3i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+(7.80e4−1.35e5i)T+(−1.37e10−2.38e10i)T2 |
| 37 | 1−5.41e5T+9.49e10T2 |
| 41 | 1+(2.68e5−4.65e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(1.00e5+1.73e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+(−2.05e5−3.55e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1−1.36e6T+1.17e12T2 |
| 59 | 1+(3.99e5−6.91e5i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(2.84e5+4.93e5i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(−2.40e6+4.16e6i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1−2.45e6T+9.09e12T2 |
| 73 | 1−1.60e6T+1.10e13T2 |
| 79 | 1+(2.79e6+4.84e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(4.91e6+8.51e6i)T+(−1.35e13+2.35e13i)T2 |
| 89 | 1+1.17e5T+4.42e13T2 |
| 97 | 1+(−3.89e6−6.74e6i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49537873698681884216279868592, −10.21016067831766051075176266341, −9.494854408649294685338209683454, −8.538098451118813473306618903313, −7.49981352446716050057523340776, −5.86316711684121368304054443434, −4.79563685059621683008856552041, −3.39659163818577323590618674441, −1.85422764342332677160315632962, −0.880380918656767767778154988007,
0.844046379494394512789461709819, 2.43832735664410802550404803762, 3.95166585076624984543250409010, 5.58362266209070252081425321293, 6.41601462978018089508413745826, 7.46278997314300503246859538317, 8.500872525920530851113755911346, 9.745599058591567801855386568331, 10.44244158922859724776830215172, 11.48802809862510713726347586445