L(s) = 1 | + (−4 + 6.92i)2-s + (−31.9 − 55.4i)4-s + (−235. − 408. i)5-s + (−367. + 636. i)7-s + 511.·8-s + 3.77e3·10-s + (−2.66e3 + 4.60e3i)11-s + (−4.43e3 − 7.67e3i)13-s + (−2.94e3 − 5.09e3i)14-s + (−2.04e3 + 3.54e3i)16-s − 3.41e4·17-s − 8.70e3·19-s + (−1.50e4 + 2.61e4i)20-s + (−2.12e4 − 3.68e4i)22-s + (−2.60e4 − 4.51e4i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.843 − 1.46i)5-s + (−0.405 + 0.701i)7-s + 0.353·8-s + 1.19·10-s + (−0.602 + 1.04i)11-s + (−0.559 − 0.969i)13-s + (−0.286 − 0.496i)14-s + (−0.125 + 0.216i)16-s − 1.68·17-s − 0.291·19-s + (−0.421 + 0.730i)20-s + (−0.426 − 0.738i)22-s + (−0.446 − 0.773i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.642−0.766i)Λ(8−s)
Λ(s)=(=(162s/2ΓC(s+7/2)L(s)(0.642−0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.642−0.766i
|
Analytic conductor: |
50.6063 |
Root analytic conductor: |
7.11381 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :7/2), 0.642−0.766i)
|
Particular Values
L(4) |
≈ |
0.5607354604 |
L(21) |
≈ |
0.5607354604 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(4−6.92i)T |
| 3 | 1 |
good | 5 | 1+(235.+408.i)T+(−3.90e4+6.76e4i)T2 |
| 7 | 1+(367.−636.i)T+(−4.11e5−7.13e5i)T2 |
| 11 | 1+(2.66e3−4.60e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(4.43e3+7.67e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1+3.41e4T+4.10e8T2 |
| 19 | 1+8.70e3T+8.93e8T2 |
| 23 | 1+(2.60e4+4.51e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(−1.06e5+1.84e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+(−1.16e5−2.01e5i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1−6.73e4T+9.49e10T2 |
| 41 | 1+(−2.25e4−3.90e4i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+(1.07e5−1.85e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+(−2.80e5+4.85e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+2.44e5T+1.17e12T2 |
| 59 | 1+(9.66e5+1.67e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(1.06e6−1.84e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(−8.14e5−1.41e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1−5.38e6T+9.09e12T2 |
| 73 | 1+1.01e6T+1.10e13T2 |
| 79 | 1+(−3.87e6+6.70e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+(1.04e6−1.81e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1−1.17e7T+4.42e13T2 |
| 97 | 1+(9.61e5−1.66e6i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.00623627525008745674351045109, −10.45870156078439090842471292309, −9.370889438239395012661086394119, −8.484531124864597373201688008136, −7.80761514221843975512472991126, −6.45112814590231201236759327417, −5.05164377956970977674208037733, −4.42268968357139324854598370906, −2.34479546983453816364319512662, −0.55395323705862797919098087384,
0.31853878932003977321339357356, 2.34117534416299320622998616371, 3.36503305745231424375723216326, 4.35211546290866933134079740307, 6.45828164291577771189593479498, 7.23008229708142280760882464389, 8.291257550547796394814422162652, 9.586248279992620643019574331470, 10.80230844067287965269215245834, 11.03540444856480751740925215503