L(s) = 1 | + (−4 + 6.92i)2-s + (−31.9 − 55.4i)4-s + (−5.62 − 9.73i)5-s + (−719. + 1.24e3i)7-s + 511.·8-s + 89.9·10-s + (−2.21e3 + 3.83e3i)11-s + (3.61e3 + 6.26e3i)13-s + (−5.75e3 − 9.97e3i)14-s + (−2.04e3 + 3.54e3i)16-s + 1.32e4·17-s + 1.35e4·19-s + (−359. + 623. i)20-s + (−1.77e4 − 3.07e4i)22-s + (3.28e4 + 5.69e4i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.0201 − 0.0348i)5-s + (−0.793 + 1.37i)7-s + 0.353·8-s + 0.0284·10-s + (−0.502 + 0.869i)11-s + (0.456 + 0.790i)13-s + (−0.560 − 0.971i)14-s + (−0.125 + 0.216i)16-s + 0.652·17-s + 0.451·19-s + (−0.0100 + 0.0174i)20-s + (−0.355 − 0.614i)22-s + (0.563 + 0.975i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(−0.642+0.766i)Λ(8−s)
Λ(s)=(=(162s/2ΓC(s+7/2)L(s)(−0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
−0.642+0.766i
|
Analytic conductor: |
50.6063 |
Root analytic conductor: |
7.11381 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :7/2), −0.642+0.766i)
|
Particular Values
L(4) |
≈ |
0.6053625643 |
L(21) |
≈ |
0.6053625643 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(4−6.92i)T |
| 3 | 1 |
good | 5 | 1+(5.62+9.73i)T+(−3.90e4+6.76e4i)T2 |
| 7 | 1+(719.−1.24e3i)T+(−4.11e5−7.13e5i)T2 |
| 11 | 1+(2.21e3−3.83e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(−3.61e3−6.26e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1−1.32e4T+4.10e8T2 |
| 19 | 1−1.35e4T+8.93e8T2 |
| 23 | 1+(−3.28e4−5.69e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(7.42e4−1.28e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+(6.94e4+1.20e5i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1+1.21e5T+9.49e10T2 |
| 41 | 1+(2.63e4+4.57e4i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+(3.75e5−6.51e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+(4.91e5−8.51e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+6.21e5T+1.17e12T2 |
| 59 | 1+(4.07e5+7.05e5i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(−1.23e6+2.13e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(1.72e6+2.99e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1−3.64e6T+9.09e12T2 |
| 73 | 1+5.55e6T+1.10e13T2 |
| 79 | 1+(−1.02e6+1.77e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+(5.13e6−8.88e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1−8.12e6T+4.42e13T2 |
| 97 | 1+(−6.64e6+1.15e7i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.31039768106890922110017061689, −11.16952891818876009100888264938, −9.719387971440982894210454510478, −9.252447415816972584987761916363, −8.094527599978137771758316888382, −6.92417885483153803624900046771, −5.91066637311018095030120865747, −4.90789543430469953064019459919, −3.15281217337257346854871928542, −1.69387552978732328603835821663,
0.20780042925037711965450096921, 1.08305847857385341894271348662, 3.02872539211603706842819759593, 3.75569407739017611735964207410, 5.38786971024530444399090246530, 6.85603280902836257994594323136, 7.85179428645562890058274313293, 8.956564618606019168333674198703, 10.28629193658380531326467219819, 10.57276827953500966588498236863