Properties

Label 2-1620-1.1-c1-0-6
Degree $2$
Conductor $1620$
Sign $1$
Analytic cond. $12.9357$
Root an. cond. $3.59663$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2.73·7-s − 5.52·11-s − 3.52·13-s + 5.52·17-s + 7.52·19-s − 0.734·23-s + 25-s + 4.46·29-s + 7.52·31-s + 2.73·35-s + 6.05·37-s + 1.05·41-s − 3.52·43-s − 1.20·47-s + 0.475·49-s − 1.46·53-s − 5.52·55-s + 1.46·59-s + 9.05·61-s − 3.52·65-s − 4.25·67-s − 10.0·71-s + 8·73-s − 15.1·77-s + 2·79-s + 5.26·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.03·7-s − 1.66·11-s − 0.977·13-s + 1.33·17-s + 1.72·19-s − 0.153·23-s + 0.200·25-s + 0.829·29-s + 1.35·31-s + 0.462·35-s + 0.995·37-s + 0.164·41-s − 0.537·43-s − 0.176·47-s + 0.0679·49-s − 0.201·53-s − 0.744·55-s + 0.191·59-s + 1.15·61-s − 0.437·65-s − 0.520·67-s − 1.19·71-s + 0.936·73-s − 1.72·77-s + 0.225·79-s + 0.577·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1620\)    =    \(2^{2} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(12.9357\)
Root analytic conductor: \(3.59663\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1620,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.999582228\)
\(L(\frac12)\) \(\approx\) \(1.999582228\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 2.73T + 7T^{2} \)
11 \( 1 + 5.52T + 11T^{2} \)
13 \( 1 + 3.52T + 13T^{2} \)
17 \( 1 - 5.52T + 17T^{2} \)
19 \( 1 - 7.52T + 19T^{2} \)
23 \( 1 + 0.734T + 23T^{2} \)
29 \( 1 - 4.46T + 29T^{2} \)
31 \( 1 - 7.52T + 31T^{2} \)
37 \( 1 - 6.05T + 37T^{2} \)
41 \( 1 - 1.05T + 41T^{2} \)
43 \( 1 + 3.52T + 43T^{2} \)
47 \( 1 + 1.20T + 47T^{2} \)
53 \( 1 + 1.46T + 53T^{2} \)
59 \( 1 - 1.46T + 59T^{2} \)
61 \( 1 - 9.05T + 61T^{2} \)
67 \( 1 + 4.25T + 67T^{2} \)
71 \( 1 + 10.0T + 71T^{2} \)
73 \( 1 - 8T + 73T^{2} \)
79 \( 1 - 2T + 79T^{2} \)
83 \( 1 - 5.26T + 83T^{2} \)
89 \( 1 - 3T + 89T^{2} \)
97 \( 1 - 9.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.736639289727599557711373686456, −8.342204531456090311354677390391, −7.83655643456665478985981197567, −7.26594751963026431141850462482, −5.93952620643909109879999078487, −5.13382741899647136266343243336, −4.78104532984717286088583198403, −3.15666010952137241106867011650, −2.39045254788942127022351132667, −1.03856821501147150125218615389, 1.03856821501147150125218615389, 2.39045254788942127022351132667, 3.15666010952137241106867011650, 4.78104532984717286088583198403, 5.13382741899647136266343243336, 5.93952620643909109879999078487, 7.26594751963026431141850462482, 7.83655643456665478985981197567, 8.342204531456090311354677390391, 9.736639289727599557711373686456

Graph of the $Z$-function along the critical line