Properties

Label 2-1638-13.12-c1-0-12
Degree $2$
Conductor $1638$
Sign $0.907 - 0.419i$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 2.54i·5-s i·7-s + i·8-s + 2.54·10-s − 3.33i·11-s + (−3.27 + 1.51i)13-s − 14-s + 16-s + 7.09·17-s + 4.54i·19-s − 2.54i·20-s − 3.33·22-s + 1.75·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 1.13i·5-s − 0.377i·7-s + 0.353i·8-s + 0.804·10-s − 1.00i·11-s + (−0.907 + 0.419i)13-s − 0.267·14-s + 0.250·16-s + 1.71·17-s + 1.04i·19-s − 0.569i·20-s − 0.710·22-s + 0.366·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.907 - 0.419i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.907 - 0.419i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $0.907 - 0.419i$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1638} (883, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 0.907 - 0.419i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.417534131\)
\(L(\frac12)\) \(\approx\) \(1.417534131\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 + iT \)
13 \( 1 + (3.27 - 1.51i)T \)
good5 \( 1 - 2.54iT - 5T^{2} \)
11 \( 1 + 3.33iT - 11T^{2} \)
17 \( 1 - 7.09T + 17T^{2} \)
19 \( 1 - 4.54iT - 19T^{2} \)
23 \( 1 - 1.75T + 23T^{2} \)
29 \( 1 + 7.57T + 29T^{2} \)
31 \( 1 - 3.33iT - 31T^{2} \)
37 \( 1 + 3.75iT - 37T^{2} \)
41 \( 1 - 4.24iT - 41T^{2} \)
43 \( 1 - 9.09T + 43T^{2} \)
47 \( 1 - 11.3iT - 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 8.06iT - 59T^{2} \)
61 \( 1 + 0.785T + 61T^{2} \)
67 \( 1 - 5.75iT - 67T^{2} \)
71 \( 1 - 11.1iT - 71T^{2} \)
73 \( 1 - 9.33iT - 73T^{2} \)
79 \( 1 - 4.85T + 79T^{2} \)
83 \( 1 - 11.2iT - 83T^{2} \)
89 \( 1 + 15.0iT - 89T^{2} \)
97 \( 1 + 7.75iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.729335220416505249324305098991, −8.781814089037556796131262013298, −7.68260955679953935826521609466, −7.28309422848531062502652433407, −6.06770248878088331666782537238, −5.41577668338039580885831538896, −4.08143528449735087195759981861, −3.33079501071606263418679405479, −2.58507684435035833590988941521, −1.18063557624227386495500910813, 0.63019109724969909408816700856, 2.10548935790796452728326761600, 3.51253317612974734145963209624, 4.74364796271819359476741477701, 5.14157187608412471362582694543, 5.90750953326133879694370515052, 7.18639270060927706581343487475, 7.61708007622658875900182328421, 8.497419175252056365387965448392, 9.364583494257564269985298765449

Graph of the $Z$-function along the critical line