L(s) = 1 | − i·2-s − 4-s + 2.54i·5-s − i·7-s + i·8-s + 2.54·10-s − 3.33i·11-s + (−3.27 + 1.51i)13-s − 14-s + 16-s + 7.09·17-s + 4.54i·19-s − 2.54i·20-s − 3.33·22-s + 1.75·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 1.13i·5-s − 0.377i·7-s + 0.353i·8-s + 0.804·10-s − 1.00i·11-s + (−0.907 + 0.419i)13-s − 0.267·14-s + 0.250·16-s + 1.71·17-s + 1.04i·19-s − 0.569i·20-s − 0.710·22-s + 0.366·23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.907−0.419i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.907−0.419i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.907−0.419i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.907−0.419i)
|
Particular Values
L(1) |
≈ |
1.417534131 |
L(21) |
≈ |
1.417534131 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 7 | 1+iT |
| 13 | 1+(3.27−1.51i)T |
good | 5 | 1−2.54iT−5T2 |
| 11 | 1+3.33iT−11T2 |
| 17 | 1−7.09T+17T2 |
| 19 | 1−4.54iT−19T2 |
| 23 | 1−1.75T+23T2 |
| 29 | 1+7.57T+29T2 |
| 31 | 1−3.33iT−31T2 |
| 37 | 1+3.75iT−37T2 |
| 41 | 1−4.24iT−41T2 |
| 43 | 1−9.09T+43T2 |
| 47 | 1−11.3iT−47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1−8.06iT−59T2 |
| 61 | 1+0.785T+61T2 |
| 67 | 1−5.75iT−67T2 |
| 71 | 1−11.1iT−71T2 |
| 73 | 1−9.33iT−73T2 |
| 79 | 1−4.85T+79T2 |
| 83 | 1−11.2iT−83T2 |
| 89 | 1+15.0iT−89T2 |
| 97 | 1+7.75iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.729335220416505249324305098991, −8.781814089037556796131262013298, −7.68260955679953935826521609466, −7.28309422848531062502652433407, −6.06770248878088331666782537238, −5.41577668338039580885831538896, −4.08143528449735087195759981861, −3.33079501071606263418679405479, −2.58507684435035833590988941521, −1.18063557624227386495500910813,
0.63019109724969909408816700856, 2.10548935790796452728326761600, 3.51253317612974734145963209624, 4.74364796271819359476741477701, 5.14157187608412471362582694543, 5.90750953326133879694370515052, 7.18639270060927706581343487475, 7.61708007622658875900182328421, 8.497419175252056365387965448392, 9.364583494257564269985298765449