L(s) = 1 | + (1.31 + 1.31i)2-s + (1.52 + 0.825i)3-s + 1.47i·4-s + (−1.49 − 1.66i)5-s + (0.918 + 3.09i)6-s + (−2.09 + 2.09i)7-s + (0.695 − 0.695i)8-s + (1.63 + 2.51i)9-s + (0.228 − 4.16i)10-s − i·11-s + (−1.21 + 2.24i)12-s + (0.161 + 0.161i)13-s − 5.51·14-s + (−0.897 − 3.76i)15-s + 4.77·16-s + (−3.37 − 3.37i)17-s + ⋯ |
L(s) = 1 | + (0.931 + 0.931i)2-s + (0.879 + 0.476i)3-s + 0.735i·4-s + (−0.667 − 0.744i)5-s + (0.375 + 1.26i)6-s + (−0.791 + 0.791i)7-s + (0.245 − 0.245i)8-s + (0.545 + 0.837i)9-s + (0.0721 − 1.31i)10-s − 0.301i·11-s + (−0.350 + 0.647i)12-s + (0.0448 + 0.0448i)13-s − 1.47·14-s + (−0.231 − 0.972i)15-s + 1.19·16-s + (−0.818 − 0.818i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.314 - 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.314 - 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.60469 + 1.15914i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60469 + 1.15914i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.52 - 0.825i)T \) |
| 5 | \( 1 + (1.49 + 1.66i)T \) |
| 11 | \( 1 + iT \) |
good | 2 | \( 1 + (-1.31 - 1.31i)T + 2iT^{2} \) |
| 7 | \( 1 + (2.09 - 2.09i)T - 7iT^{2} \) |
| 13 | \( 1 + (-0.161 - 0.161i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.37 + 3.37i)T + 17iT^{2} \) |
| 19 | \( 1 + 8.52iT - 19T^{2} \) |
| 23 | \( 1 + (3.15 - 3.15i)T - 23iT^{2} \) |
| 29 | \( 1 + 3.01T + 29T^{2} \) |
| 31 | \( 1 - 5.01T + 31T^{2} \) |
| 37 | \( 1 + (4.74 - 4.74i)T - 37iT^{2} \) |
| 41 | \( 1 - 4.49iT - 41T^{2} \) |
| 43 | \( 1 + (-0.336 - 0.336i)T + 43iT^{2} \) |
| 47 | \( 1 + (-6.15 - 6.15i)T + 47iT^{2} \) |
| 53 | \( 1 + (1.62 - 1.62i)T - 53iT^{2} \) |
| 59 | \( 1 + 5.16T + 59T^{2} \) |
| 61 | \( 1 + 3.39T + 61T^{2} \) |
| 67 | \( 1 + (-9.74 + 9.74i)T - 67iT^{2} \) |
| 71 | \( 1 + 2.23iT - 71T^{2} \) |
| 73 | \( 1 + (-5.43 - 5.43i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.93iT - 79T^{2} \) |
| 83 | \( 1 + (0.365 - 0.365i)T - 83iT^{2} \) |
| 89 | \( 1 - 3.70T + 89T^{2} \) |
| 97 | \( 1 + (-4.94 + 4.94i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.37268651832860239604878079920, −12.48378788126502144176055814525, −11.21787802188179151026570469180, −9.579644690982394268610525121062, −8.888956750016994977918621365263, −7.74700631008119327928291997558, −6.63119018719156958129285070918, −5.19841871877601775646794394246, −4.34915768499635624026497800675, −3.01571106081857332206658906678,
2.16937882130937131302986705756, 3.61532460070629492148576233819, 4.00689206740429586353380623628, 6.28085266209515157041980337691, 7.41338166074995238490754695358, 8.349497971493801741539148197497, 10.07420012731094373553596468781, 10.64853450861240751759268999093, 12.05421289106303629159241090429, 12.57673104422850887135674256528