L(s) = 1 | + (1.31 + 1.31i)2-s + (1.52 + 0.825i)3-s + 1.47i·4-s + (−1.49 − 1.66i)5-s + (0.918 + 3.09i)6-s + (−2.09 + 2.09i)7-s + (0.695 − 0.695i)8-s + (1.63 + 2.51i)9-s + (0.228 − 4.16i)10-s − i·11-s + (−1.21 + 2.24i)12-s + (0.161 + 0.161i)13-s − 5.51·14-s + (−0.897 − 3.76i)15-s + 4.77·16-s + (−3.37 − 3.37i)17-s + ⋯ |
L(s) = 1 | + (0.931 + 0.931i)2-s + (0.879 + 0.476i)3-s + 0.735i·4-s + (−0.667 − 0.744i)5-s + (0.375 + 1.26i)6-s + (−0.791 + 0.791i)7-s + (0.245 − 0.245i)8-s + (0.545 + 0.837i)9-s + (0.0721 − 1.31i)10-s − 0.301i·11-s + (−0.350 + 0.647i)12-s + (0.0448 + 0.0448i)13-s − 1.47·14-s + (−0.231 − 0.972i)15-s + 1.19·16-s + (−0.818 − 0.818i)17-s + ⋯ |
Λ(s)=(=(165s/2ΓC(s)L(s)(0.314−0.949i)Λ(2−s)
Λ(s)=(=(165s/2ΓC(s+1/2)L(s)(0.314−0.949i)Λ(1−s)
Degree: |
2 |
Conductor: |
165
= 3⋅5⋅11
|
Sign: |
0.314−0.949i
|
Analytic conductor: |
1.31753 |
Root analytic conductor: |
1.14783 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ165(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 165, ( :1/2), 0.314−0.949i)
|
Particular Values
L(1) |
≈ |
1.60469+1.15914i |
L(21) |
≈ |
1.60469+1.15914i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.52−0.825i)T |
| 5 | 1+(1.49+1.66i)T |
| 11 | 1+iT |
good | 2 | 1+(−1.31−1.31i)T+2iT2 |
| 7 | 1+(2.09−2.09i)T−7iT2 |
| 13 | 1+(−0.161−0.161i)T+13iT2 |
| 17 | 1+(3.37+3.37i)T+17iT2 |
| 19 | 1+8.52iT−19T2 |
| 23 | 1+(3.15−3.15i)T−23iT2 |
| 29 | 1+3.01T+29T2 |
| 31 | 1−5.01T+31T2 |
| 37 | 1+(4.74−4.74i)T−37iT2 |
| 41 | 1−4.49iT−41T2 |
| 43 | 1+(−0.336−0.336i)T+43iT2 |
| 47 | 1+(−6.15−6.15i)T+47iT2 |
| 53 | 1+(1.62−1.62i)T−53iT2 |
| 59 | 1+5.16T+59T2 |
| 61 | 1+3.39T+61T2 |
| 67 | 1+(−9.74+9.74i)T−67iT2 |
| 71 | 1+2.23iT−71T2 |
| 73 | 1+(−5.43−5.43i)T+73iT2 |
| 79 | 1−5.93iT−79T2 |
| 83 | 1+(0.365−0.365i)T−83iT2 |
| 89 | 1−3.70T+89T2 |
| 97 | 1+(−4.94+4.94i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.37268651832860239604878079920, −12.48378788126502144176055814525, −11.21787802188179151026570469180, −9.579644690982394268610525121062, −8.888956750016994977918621365263, −7.74700631008119327928291997558, −6.63119018719156958129285070918, −5.19841871877601775646794394246, −4.34915768499635624026497800675, −3.01571106081857332206658906678,
2.16937882130937131302986705756, 3.61532460070629492148576233819, 4.00689206740429586353380623628, 6.28085266209515157041980337691, 7.41338166074995238490754695358, 8.349497971493801741539148197497, 10.07420012731094373553596468781, 10.64853450861240751759268999093, 12.05421289106303629159241090429, 12.57673104422850887135674256528