L(s) = 1 | + (1.34 − 0.434i)2-s + (−0.866 + 0.5i)3-s + (1.62 − 1.16i)4-s + (1.44 − 2.49i)5-s + (−0.948 + 1.04i)6-s + (−2.63 + 0.194i)7-s + (1.67 − 2.27i)8-s + (0.499 − 0.866i)9-s + (0.856 − 3.98i)10-s + (2.91 + 5.04i)11-s + (−0.821 + 1.82i)12-s + 1.04·13-s + (−3.46 + 1.40i)14-s + 2.88i·15-s + (1.26 − 3.79i)16-s + (−5.91 + 3.41i)17-s + ⋯ |
L(s) = 1 | + (0.951 − 0.306i)2-s + (−0.499 + 0.288i)3-s + (0.811 − 0.584i)4-s + (0.644 − 1.11i)5-s + (−0.387 + 0.428i)6-s + (−0.997 + 0.0733i)7-s + (0.593 − 0.805i)8-s + (0.166 − 0.288i)9-s + (0.270 − 1.26i)10-s + (0.878 + 1.52i)11-s + (−0.237 + 0.526i)12-s + 0.290·13-s + (−0.926 + 0.375i)14-s + 0.744i·15-s + (0.317 − 0.948i)16-s + (−1.43 + 0.827i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.772 + 0.635i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.772 + 0.635i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62745 - 0.583286i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62745 - 0.583286i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 + 0.434i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (2.63 - 0.194i)T \) |
good | 5 | \( 1 + (-1.44 + 2.49i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.91 - 5.04i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 1.04T + 13T^{2} \) |
| 17 | \( 1 + (5.91 - 3.41i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.589 + 0.340i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.85 + 1.07i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6.61iT - 29T^{2} \) |
| 31 | \( 1 + (1.91 + 3.31i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.06 + 1.19i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.19iT - 41T^{2} \) |
| 43 | \( 1 - 1.34T + 43T^{2} \) |
| 47 | \( 1 + (5.52 - 9.57i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.99 + 4.03i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.81 + 3.93i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.63 + 2.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.65 + 11.5i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.08iT - 71T^{2} \) |
| 73 | \( 1 + (-4.88 + 2.82i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (10.9 + 6.32i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 0.482iT - 83T^{2} \) |
| 89 | \( 1 + (-10.7 - 6.19i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.63iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.76757748002510149614795482892, −12.06331390313397351244067121741, −10.78622198854137575406187948322, −9.755170721669716510332174880221, −9.035260012394668252276566695807, −6.88025933215595418447040792340, −6.10045177864596035529977108331, −4.87676005778960035245180567586, −3.96907017172117565534504302796, −1.84146809126520651087391505517,
2.62291119429286503342540802073, 3.84652150762071490286595306586, 5.73068001940621656644904799721, 6.44094580446297855935906431891, 7.01279326763343115150200880704, 8.739854365737951880091495453333, 10.22840814143953579564661388607, 11.19971506497024468565252809712, 11.85148126908736759539171116531, 13.40768912663512112008077243502