Properties

Label 2-168-56.19-c1-0-1
Degree $2$
Conductor $168$
Sign $0.835 - 0.549i$
Analytic cond. $1.34148$
Root an. cond. $1.15822$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.297 − 1.38i)2-s + (−0.866 + 0.5i)3-s + (−1.82 + 0.821i)4-s + (−1.44 + 2.49i)5-s + (0.948 + 1.04i)6-s + (2.63 − 0.194i)7-s + (1.67 + 2.27i)8-s + (0.499 − 0.866i)9-s + (3.88 + 1.25i)10-s + (2.91 + 5.04i)11-s + (1.16 − 1.62i)12-s − 1.04·13-s + (−1.05 − 3.59i)14-s − 2.88i·15-s + (2.64 − 2.99i)16-s + (−5.91 + 3.41i)17-s + ⋯
L(s)  = 1  + (−0.210 − 0.977i)2-s + (−0.499 + 0.288i)3-s + (−0.911 + 0.410i)4-s + (−0.644 + 1.11i)5-s + (0.387 + 0.428i)6-s + (0.997 − 0.0733i)7-s + (0.593 + 0.805i)8-s + (0.166 − 0.288i)9-s + (1.22 + 0.395i)10-s + (0.878 + 1.52i)11-s + (0.337 − 0.468i)12-s − 0.290·13-s + (−0.281 − 0.959i)14-s − 0.744i·15-s + (0.662 − 0.749i)16-s + (−1.43 + 0.827i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(168\)    =    \(2^{3} \cdot 3 \cdot 7\)
Sign: $0.835 - 0.549i$
Analytic conductor: \(1.34148\)
Root analytic conductor: \(1.15822\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{168} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 168,\ (\ :1/2),\ 0.835 - 0.549i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.718742 + 0.215148i\)
\(L(\frac12)\) \(\approx\) \(0.718742 + 0.215148i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.297 + 1.38i)T \)
3 \( 1 + (0.866 - 0.5i)T \)
7 \( 1 + (-2.63 + 0.194i)T \)
good5 \( 1 + (1.44 - 2.49i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-2.91 - 5.04i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + 1.04T + 13T^{2} \)
17 \( 1 + (5.91 - 3.41i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.589 + 0.340i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1.85 - 1.07i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 6.61iT - 29T^{2} \)
31 \( 1 + (-1.91 - 3.31i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-2.06 - 1.19i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + 1.19iT - 41T^{2} \)
43 \( 1 - 1.34T + 43T^{2} \)
47 \( 1 + (-5.52 + 9.57i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (6.99 - 4.03i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-6.81 + 3.93i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.63 - 2.83i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (6.65 + 11.5i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 1.08iT - 71T^{2} \)
73 \( 1 + (-4.88 + 2.82i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-10.9 - 6.32i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 - 0.482iT - 83T^{2} \)
89 \( 1 + (-10.7 - 6.19i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + 3.63iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.43566402486987933433139497688, −11.66151945527554853545357408006, −10.99126521882961340862699373974, −10.23860415986680213961407075345, −9.083262485005410685364419365370, −7.76127666646308628475730739173, −6.71748794144035248492032995610, −4.72573805715045976545324830991, −3.94723382632786933718750051933, −2.09556843334520905767543930009, 0.881807971014678891294162207777, 4.29941058162651676578244070232, 5.12142898265596983022459079354, 6.33128430032706556247289792031, 7.56653896904097926186311583356, 8.596229455069735174298640573691, 9.069418811783590152973947703454, 10.93178143206181267886539949256, 11.67243647452499682103712289500, 12.81310097309295223967360557228

Graph of the $Z$-function along the critical line