L(s) = 1 | + (0.0805 + 1.73i)3-s + (1.90 − 3.29i)5-s + (2.23 + 1.41i)7-s + (−2.98 + 0.278i)9-s + (0.309 − 0.178i)11-s + 4.04i·13-s + (5.84 + 3.02i)15-s + (0.0519 + 0.0900i)17-s + (−2.12 − 1.22i)19-s + (−2.26 + 3.98i)21-s + (−1.15 − 0.665i)23-s + (−4.72 − 8.17i)25-s + (−0.723 − 5.14i)27-s − 4.97i·29-s + (−6.83 + 3.94i)31-s + ⋯ |
L(s) = 1 | + (0.0465 + 0.998i)3-s + (0.849 − 1.47i)5-s + (0.844 + 0.535i)7-s + (−0.995 + 0.0929i)9-s + (0.0933 − 0.0538i)11-s + 1.12i·13-s + (1.50 + 0.780i)15-s + (0.0126 + 0.0218i)17-s + (−0.487 − 0.281i)19-s + (−0.495 + 0.868i)21-s + (−0.240 − 0.138i)23-s + (−0.944 − 1.63i)25-s + (−0.139 − 0.990i)27-s − 0.923i·29-s + (−1.22 + 0.708i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.391i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.920 - 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30542 + 0.266149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30542 + 0.266149i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.0805 - 1.73i)T \) |
| 7 | \( 1 + (-2.23 - 1.41i)T \) |
good | 5 | \( 1 + (-1.90 + 3.29i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.309 + 0.178i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4.04iT - 13T^{2} \) |
| 17 | \( 1 + (-0.0519 - 0.0900i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.12 + 1.22i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.15 + 0.665i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.97iT - 29T^{2} \) |
| 31 | \( 1 + (6.83 - 3.94i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.45 + 9.45i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.15T + 41T^{2} \) |
| 43 | \( 1 - 0.502T + 43T^{2} \) |
| 47 | \( 1 + (5.72 - 9.91i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.08 - 2.93i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.77 + 6.53i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.20 - 4.73i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.34 + 2.32i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.78iT - 71T^{2} \) |
| 73 | \( 1 + (0.203 - 0.117i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.61 - 2.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9.07T + 83T^{2} \) |
| 89 | \( 1 + (3.41 - 5.90i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 5.14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82288738152559603027188633637, −11.81921500272016051120446533419, −10.86945006210972323392032594350, −9.474144494569531890198705294403, −9.069013713756212065036538708000, −8.144973828748834967057947891953, −6.05220565933164394711759628988, −5.06986487046246025043120490336, −4.27865416442050184480207527054, −1.99561098480782906180991168269,
1.87291598327957002758365077659, 3.24001845956244916305295914090, 5.45109728803194678722569803022, 6.52497170698822048212672937751, 7.39044511587630937233808389011, 8.335216464299551128745421496166, 9.972224887704967154345561660082, 10.80713039769646776126177312380, 11.60008827499422557716955364166, 12.98676476614376235510784831787