L(s) = 1 | + (1.32 + 1.11i)3-s − 2.23i·5-s + 2.64·7-s + (0.5 + 2.95i)9-s + 5.91i·11-s + 2.64·13-s + (2.50 − 2.95i)15-s + 2.23i·17-s + (3.50 + 2.95i)21-s − 5.00·25-s + (−2.64 + 4.47i)27-s − 5.91i·29-s + (−6.61 + 7.82i)33-s − 5.91i·35-s + (3.50 + 2.95i)39-s + ⋯ |
L(s) = 1 | + (0.763 + 0.645i)3-s − 0.999i·5-s + 0.999·7-s + (0.166 + 0.986i)9-s + 1.78i·11-s + 0.733·13-s + (0.645 − 0.763i)15-s + 0.542i·17-s + (0.763 + 0.645i)21-s − 1.00·25-s + (−0.509 + 0.860i)27-s − 1.09i·29-s + (−1.15 + 1.36i)33-s − 0.999i·35-s + (0.560 + 0.473i)39-s + ⋯ |
Λ(s)=(=(1680s/2ΓC(s)L(s)(0.645−0.763i)Λ(2−s)
Λ(s)=(=(1680s/2ΓC(s+1/2)L(s)(0.645−0.763i)Λ(1−s)
Degree: |
2 |
Conductor: |
1680
= 24⋅3⋅5⋅7
|
Sign: |
0.645−0.763i
|
Analytic conductor: |
13.4148 |
Root analytic conductor: |
3.66263 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1680(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1680, ( :1/2), 0.645−0.763i)
|
Particular Values
L(1) |
≈ |
2.575867497 |
L(21) |
≈ |
2.575867497 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.32−1.11i)T |
| 5 | 1+2.23iT |
| 7 | 1−2.64T |
good | 11 | 1−5.91iT−11T2 |
| 13 | 1−2.64T+13T2 |
| 17 | 1−2.23iT−17T2 |
| 19 | 1−19T2 |
| 23 | 1+23T2 |
| 29 | 1+5.91iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1−37T2 |
| 41 | 1+41T2 |
| 43 | 1−43T2 |
| 47 | 1−11.1iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1−61T2 |
| 67 | 1−67T2 |
| 71 | 1+11.8iT−71T2 |
| 73 | 1−10.5T+73T2 |
| 79 | 1−T+79T2 |
| 83 | 1+8.94iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1−18.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.379848192735294361021552518228, −8.720386269714447252084914173897, −7.939351269325077570501980897889, −7.51081141673473194106519147718, −6.09812943164351163838147747091, −4.97478162678790030623157479396, −4.52897198952366180722656194167, −3.81058416471280730985409857525, −2.25620305537984466720236272901, −1.50504930325271593128499519220,
0.987091973113866678190838040365, 2.22092022367522043124687045394, 3.21284286801102683484996634165, 3.81300495629830335409044942467, 5.31712709551524249238507716730, 6.17222088708926379418825205322, 6.93633576982369294721554630260, 7.71744351816188103250288745195, 8.478320022035703595871627067991, 8.875575741355872677074686417395