L(s) = 1 | − 3·3-s − 5·5-s − 7·7-s + 9·9-s − 37.4·11-s + 29.0·13-s + 15·15-s + 58.4·17-s + 54.5·19-s + 21·21-s − 161.·23-s + 25·25-s − 27·27-s + 137.·29-s − 154.·31-s + 112.·33-s + 35·35-s − 350.·37-s − 87.0·39-s + 353.·41-s + 518.·43-s − 45·45-s + 542.·47-s + 49·49-s − 175.·51-s + 305.·53-s + 187.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s − 0.377·7-s + 0.333·9-s − 1.02·11-s + 0.619·13-s + 0.258·15-s + 0.833·17-s + 0.659·19-s + 0.218·21-s − 1.46·23-s + 0.200·25-s − 0.192·27-s + 0.880·29-s − 0.896·31-s + 0.591·33-s + 0.169·35-s − 1.55·37-s − 0.357·39-s + 1.34·41-s + 1.83·43-s − 0.149·45-s + 1.68·47-s + 0.142·49-s − 0.481·51-s + 0.791·53-s + 0.458·55-s + ⋯ |
Λ(s)=(=(1680s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1680s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 5 | 1+5T |
| 7 | 1+7T |
good | 11 | 1+37.4T+1.33e3T2 |
| 13 | 1−29.0T+2.19e3T2 |
| 17 | 1−58.4T+4.91e3T2 |
| 19 | 1−54.5T+6.85e3T2 |
| 23 | 1+161.T+1.21e4T2 |
| 29 | 1−137.T+2.43e4T2 |
| 31 | 1+154.T+2.97e4T2 |
| 37 | 1+350.T+5.06e4T2 |
| 41 | 1−353.T+6.89e4T2 |
| 43 | 1−518.T+7.95e4T2 |
| 47 | 1−542.T+1.03e5T2 |
| 53 | 1−305.T+1.48e5T2 |
| 59 | 1+14.6T+2.05e5T2 |
| 61 | 1+171.T+2.26e5T2 |
| 67 | 1+551.T+3.00e5T2 |
| 71 | 1−120.T+3.57e5T2 |
| 73 | 1−284.T+3.89e5T2 |
| 79 | 1+941.T+4.93e5T2 |
| 83 | 1+377.T+5.71e5T2 |
| 89 | 1+677.T+7.04e5T2 |
| 97 | 1+1.22e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.531756647116448101446720585050, −7.65799538734073440975979290978, −7.15152862733662241905964892920, −5.88166212268994993932282941827, −5.58669225128133447694363234460, −4.38301460074768451552671671976, −3.56974716056325902453382840958, −2.49988520297808149484077279092, −1.07404457693876035493318885050, 0,
1.07404457693876035493318885050, 2.49988520297808149484077279092, 3.56974716056325902453382840958, 4.38301460074768451552671671976, 5.58669225128133447694363234460, 5.88166212268994993932282941827, 7.15152862733662241905964892920, 7.65799538734073440975979290978, 8.531756647116448101446720585050