Properties

Label 2-1680-1.1-c3-0-40
Degree $2$
Conductor $1680$
Sign $-1$
Analytic cond. $99.1232$
Root an. cond. $9.95606$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s − 7·7-s + 9·9-s − 37.4·11-s + 29.0·13-s + 15·15-s + 58.4·17-s + 54.5·19-s + 21·21-s − 161.·23-s + 25·25-s − 27·27-s + 137.·29-s − 154.·31-s + 112.·33-s + 35·35-s − 350.·37-s − 87.0·39-s + 353.·41-s + 518.·43-s − 45·45-s + 542.·47-s + 49·49-s − 175.·51-s + 305.·53-s + 187.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 0.333·9-s − 1.02·11-s + 0.619·13-s + 0.258·15-s + 0.833·17-s + 0.659·19-s + 0.218·21-s − 1.46·23-s + 0.200·25-s − 0.192·27-s + 0.880·29-s − 0.896·31-s + 0.591·33-s + 0.169·35-s − 1.55·37-s − 0.357·39-s + 1.34·41-s + 1.83·43-s − 0.149·45-s + 1.68·47-s + 0.142·49-s − 0.481·51-s + 0.791·53-s + 0.458·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(99.1232\)
Root analytic conductor: \(9.95606\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1680,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 + 5T \)
7 \( 1 + 7T \)
good11 \( 1 + 37.4T + 1.33e3T^{2} \)
13 \( 1 - 29.0T + 2.19e3T^{2} \)
17 \( 1 - 58.4T + 4.91e3T^{2} \)
19 \( 1 - 54.5T + 6.85e3T^{2} \)
23 \( 1 + 161.T + 1.21e4T^{2} \)
29 \( 1 - 137.T + 2.43e4T^{2} \)
31 \( 1 + 154.T + 2.97e4T^{2} \)
37 \( 1 + 350.T + 5.06e4T^{2} \)
41 \( 1 - 353.T + 6.89e4T^{2} \)
43 \( 1 - 518.T + 7.95e4T^{2} \)
47 \( 1 - 542.T + 1.03e5T^{2} \)
53 \( 1 - 305.T + 1.48e5T^{2} \)
59 \( 1 + 14.6T + 2.05e5T^{2} \)
61 \( 1 + 171.T + 2.26e5T^{2} \)
67 \( 1 + 551.T + 3.00e5T^{2} \)
71 \( 1 - 120.T + 3.57e5T^{2} \)
73 \( 1 - 284.T + 3.89e5T^{2} \)
79 \( 1 + 941.T + 4.93e5T^{2} \)
83 \( 1 + 377.T + 5.71e5T^{2} \)
89 \( 1 + 677.T + 7.04e5T^{2} \)
97 \( 1 + 1.22e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.531756647116448101446720585050, −7.65799538734073440975979290978, −7.15152862733662241905964892920, −5.88166212268994993932282941827, −5.58669225128133447694363234460, −4.38301460074768451552671671976, −3.56974716056325902453382840958, −2.49988520297808149484077279092, −1.07404457693876035493318885050, 0, 1.07404457693876035493318885050, 2.49988520297808149484077279092, 3.56974716056325902453382840958, 4.38301460074768451552671671976, 5.58669225128133447694363234460, 5.88166212268994993932282941827, 7.15152862733662241905964892920, 7.65799538734073440975979290978, 8.531756647116448101446720585050

Graph of the $Z$-function along the critical line