Properties

Label 2-13e2-1.1-c9-0-92
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $87.0410$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24.5·2-s + 49.9·3-s + 90.0·4-s − 1.81e3·5-s + 1.22e3·6-s + 8.70e3·7-s − 1.03e4·8-s − 1.71e4·9-s − 4.45e4·10-s + 8.29e4·11-s + 4.50e3·12-s + 2.13e5·14-s − 9.07e4·15-s − 3.00e5·16-s + 3.74e5·17-s − 4.21e5·18-s + 3.61e5·19-s − 1.63e5·20-s + 4.35e5·21-s + 2.03e6·22-s − 2.31e6·23-s − 5.17e5·24-s + 1.34e6·25-s − 1.84e6·27-s + 7.83e5·28-s − 6.49e5·29-s − 2.22e6·30-s + ⋯
L(s)  = 1  + 1.08·2-s + 0.356·3-s + 0.175·4-s − 1.29·5-s + 0.386·6-s + 1.37·7-s − 0.893·8-s − 0.873·9-s − 1.40·10-s + 1.70·11-s + 0.0626·12-s + 1.48·14-s − 0.462·15-s − 1.14·16-s + 1.08·17-s − 0.946·18-s + 0.636·19-s − 0.228·20-s + 0.488·21-s + 1.85·22-s − 1.72·23-s − 0.318·24-s + 0.686·25-s − 0.667·27-s + 0.240·28-s − 0.170·29-s − 0.501·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(87.0410\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 24.5T + 512T^{2} \)
3 \( 1 - 49.9T + 1.96e4T^{2} \)
5 \( 1 + 1.81e3T + 1.95e6T^{2} \)
7 \( 1 - 8.70e3T + 4.03e7T^{2} \)
11 \( 1 - 8.29e4T + 2.35e9T^{2} \)
17 \( 1 - 3.74e5T + 1.18e11T^{2} \)
19 \( 1 - 3.61e5T + 3.22e11T^{2} \)
23 \( 1 + 2.31e6T + 1.80e12T^{2} \)
29 \( 1 + 6.49e5T + 1.45e13T^{2} \)
31 \( 1 + 4.32e6T + 2.64e13T^{2} \)
37 \( 1 + 1.21e7T + 1.29e14T^{2} \)
41 \( 1 + 2.59e6T + 3.27e14T^{2} \)
43 \( 1 - 3.08e6T + 5.02e14T^{2} \)
47 \( 1 + 2.60e7T + 1.11e15T^{2} \)
53 \( 1 + 1.01e8T + 3.29e15T^{2} \)
59 \( 1 + 1.37e8T + 8.66e15T^{2} \)
61 \( 1 + 4.29e7T + 1.16e16T^{2} \)
67 \( 1 + 5.54e7T + 2.72e16T^{2} \)
71 \( 1 - 1.43e8T + 4.58e16T^{2} \)
73 \( 1 + 3.37e7T + 5.88e16T^{2} \)
79 \( 1 + 2.66e8T + 1.19e17T^{2} \)
83 \( 1 - 9.89e7T + 1.86e17T^{2} \)
89 \( 1 - 5.08e8T + 3.50e17T^{2} \)
97 \( 1 - 4.53e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.19753665237841359338559398181, −9.353254039428723319871992824324, −8.364498290874469947983191674449, −7.63260386179063267935671012699, −6.08646671200236855495067991256, −4.96134839808983785881099866051, −3.93521097688111131934080267540, −3.35660515892335501071083341130, −1.58747777393703079772071775130, 0, 1.58747777393703079772071775130, 3.35660515892335501071083341130, 3.93521097688111131934080267540, 4.96134839808983785881099866051, 6.08646671200236855495067991256, 7.63260386179063267935671012699, 8.364498290874469947983191674449, 9.353254039428723319871992824324, 11.19753665237841359338559398181

Graph of the $Z$-function along the critical line