Properties

Label 2-13e2-1.1-c9-0-75
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $87.0410$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24.5·2-s − 5.41·3-s + 91.2·4-s + 546.·5-s + 133.·6-s + 9.85e3·7-s + 1.03e4·8-s − 1.96e4·9-s − 1.34e4·10-s + 4.42e4·11-s − 494.·12-s − 2.41e5·14-s − 2.96e3·15-s − 3.00e5·16-s − 7.92e4·17-s + 4.82e5·18-s − 8.67e5·19-s + 4.98e4·20-s − 5.33e4·21-s − 1.08e6·22-s + 5.41e5·23-s − 5.60e4·24-s − 1.65e6·25-s + 2.13e5·27-s + 8.99e5·28-s + 4.30e6·29-s + 7.27e4·30-s + ⋯
L(s)  = 1  − 1.08·2-s − 0.0386·3-s + 0.178·4-s + 0.390·5-s + 0.0419·6-s + 1.55·7-s + 0.891·8-s − 0.998·9-s − 0.424·10-s + 0.910·11-s − 0.00688·12-s − 1.68·14-s − 0.0150·15-s − 1.14·16-s − 0.229·17-s + 1.08·18-s − 1.52·19-s + 0.0696·20-s − 0.0598·21-s − 0.988·22-s + 0.403·23-s − 0.0344·24-s − 0.847·25-s + 0.0771·27-s + 0.276·28-s + 1.12·29-s + 0.0163·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(87.0410\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 24.5T + 512T^{2} \)
3 \( 1 + 5.41T + 1.96e4T^{2} \)
5 \( 1 - 546.T + 1.95e6T^{2} \)
7 \( 1 - 9.85e3T + 4.03e7T^{2} \)
11 \( 1 - 4.42e4T + 2.35e9T^{2} \)
17 \( 1 + 7.92e4T + 1.18e11T^{2} \)
19 \( 1 + 8.67e5T + 3.22e11T^{2} \)
23 \( 1 - 5.41e5T + 1.80e12T^{2} \)
29 \( 1 - 4.30e6T + 1.45e13T^{2} \)
31 \( 1 + 4.59e6T + 2.64e13T^{2} \)
37 \( 1 + 1.27e7T + 1.29e14T^{2} \)
41 \( 1 - 5.31e6T + 3.27e14T^{2} \)
43 \( 1 + 8.91e6T + 5.02e14T^{2} \)
47 \( 1 - 4.80e7T + 1.11e15T^{2} \)
53 \( 1 + 7.71e7T + 3.29e15T^{2} \)
59 \( 1 + 7.19e7T + 8.66e15T^{2} \)
61 \( 1 + 1.20e8T + 1.16e16T^{2} \)
67 \( 1 - 3.26e8T + 2.72e16T^{2} \)
71 \( 1 + 1.08e8T + 4.58e16T^{2} \)
73 \( 1 - 3.50e8T + 5.88e16T^{2} \)
79 \( 1 - 7.71e7T + 1.19e17T^{2} \)
83 \( 1 - 3.18e8T + 1.86e17T^{2} \)
89 \( 1 + 7.89e8T + 3.50e17T^{2} \)
97 \( 1 + 1.30e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68300181607327125511473544652, −9.314961960650946170194375615775, −8.598987897627520060984321204150, −7.938472883489577298678843437034, −6.58334547098537131089844065544, −5.22706270977621561195561067114, −4.16169551522331016307700928709, −2.17113675551465102467618299225, −1.31772629476998820612185867648, 0, 1.31772629476998820612185867648, 2.17113675551465102467618299225, 4.16169551522331016307700928709, 5.22706270977621561195561067114, 6.58334547098537131089844065544, 7.938472883489577298678843437034, 8.598987897627520060984321204150, 9.314961960650946170194375615775, 10.68300181607327125511473544652

Graph of the $Z$-function along the critical line