L(s) = 1 | − 8.72·2-s + 168.·3-s − 435.·4-s − 932.·5-s − 1.46e3·6-s − 1.29e3·7-s + 8.27e3·8-s + 8.62e3·9-s + 8.13e3·10-s + 2.52e4·11-s − 7.33e4·12-s + 1.12e4·14-s − 1.56e5·15-s + 1.50e5·16-s + 1.24e5·17-s − 7.53e4·18-s + 8.52e4·19-s + 4.06e5·20-s − 2.17e5·21-s − 2.20e5·22-s − 2.01e6·23-s + 1.39e6·24-s − 1.08e6·25-s − 1.85e6·27-s + 5.63e5·28-s − 8.38e5·29-s + 1.36e6·30-s + ⋯ |
L(s) = 1 | − 0.385·2-s + 1.19·3-s − 0.851·4-s − 0.667·5-s − 0.462·6-s − 0.203·7-s + 0.714·8-s + 0.438·9-s + 0.257·10-s + 0.520·11-s − 1.02·12-s + 0.0784·14-s − 0.800·15-s + 0.575·16-s + 0.361·17-s − 0.169·18-s + 0.150·19-s + 0.568·20-s − 0.244·21-s − 0.200·22-s − 1.50·23-s + 0.856·24-s − 0.554·25-s − 0.673·27-s + 0.173·28-s − 0.220·29-s + 0.308·30-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(169s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
1.536599460 |
L(21) |
≈ |
1.536599460 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+8.72T+512T2 |
| 3 | 1−168.T+1.96e4T2 |
| 5 | 1+932.T+1.95e6T2 |
| 7 | 1+1.29e3T+4.03e7T2 |
| 11 | 1−2.52e4T+2.35e9T2 |
| 17 | 1−1.24e5T+1.18e11T2 |
| 19 | 1−8.52e4T+3.22e11T2 |
| 23 | 1+2.01e6T+1.80e12T2 |
| 29 | 1+8.38e5T+1.45e13T2 |
| 31 | 1+9.11e6T+2.64e13T2 |
| 37 | 1−1.53e7T+1.29e14T2 |
| 41 | 1−1.91e7T+3.27e14T2 |
| 43 | 1−3.30e7T+5.02e14T2 |
| 47 | 1−6.34e7T+1.11e15T2 |
| 53 | 1+4.15e7T+3.29e15T2 |
| 59 | 1+1.67e7T+8.66e15T2 |
| 61 | 1−8.56e7T+1.16e16T2 |
| 67 | 1−4.09e7T+2.72e16T2 |
| 71 | 1−1.55e8T+4.58e16T2 |
| 73 | 1−8.73e7T+5.88e16T2 |
| 79 | 1−6.00e8T+1.19e17T2 |
| 83 | 1−3.65e8T+1.86e17T2 |
| 89 | 1−3.32e8T+3.50e17T2 |
| 97 | 1−5.38e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93564394011021011287945399484, −9.572850659503106285067898440247, −9.170444432132244799119253973655, −8.007832525373815844564178552598, −7.60002368431330621634420818848, −5.78951074282403506430015212874, −4.14651791784056538683534799967, −3.59779288521559376191542521435, −2.09884317050220201249957420612, −0.61507726220777679110302580368,
0.61507726220777679110302580368, 2.09884317050220201249957420612, 3.59779288521559376191542521435, 4.14651791784056538683534799967, 5.78951074282403506430015212874, 7.60002368431330621634420818848, 8.007832525373815844564178552598, 9.170444432132244799119253973655, 9.572850659503106285067898440247, 10.93564394011021011287945399484