L(s) = 1 | + 25.3·2-s − 120.·3-s + 130.·4-s − 1.00e3·5-s − 3.06e3·6-s − 3.16e3·7-s − 9.66e3·8-s − 5.07e3·9-s − 2.54e4·10-s − 2.92e4·11-s − 1.58e4·12-s − 8.02e4·14-s + 1.21e5·15-s − 3.12e5·16-s − 2.27e5·17-s − 1.28e5·18-s − 4.16e5·19-s − 1.31e5·20-s + 3.82e5·21-s − 7.40e5·22-s − 2.24e6·23-s + 1.16e6·24-s − 9.44e5·25-s + 2.99e6·27-s − 4.14e5·28-s − 1.41e5·29-s + 3.07e6·30-s + ⋯ |
L(s) = 1 | + 1.12·2-s − 0.861·3-s + 0.255·4-s − 0.718·5-s − 0.965·6-s − 0.498·7-s − 0.834·8-s − 0.257·9-s − 0.805·10-s − 0.601·11-s − 0.220·12-s − 0.558·14-s + 0.619·15-s − 1.19·16-s − 0.661·17-s − 0.288·18-s − 0.733·19-s − 0.183·20-s + 0.429·21-s − 0.674·22-s − 1.67·23-s + 0.718·24-s − 0.483·25-s + 1.08·27-s − 0.127·28-s − 0.0371·29-s + 0.693·30-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(169s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.2821826723 |
L(21) |
≈ |
0.2821826723 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−25.3T+512T2 |
| 3 | 1+120.T+1.96e4T2 |
| 5 | 1+1.00e3T+1.95e6T2 |
| 7 | 1+3.16e3T+4.03e7T2 |
| 11 | 1+2.92e4T+2.35e9T2 |
| 17 | 1+2.27e5T+1.18e11T2 |
| 19 | 1+4.16e5T+3.22e11T2 |
| 23 | 1+2.24e6T+1.80e12T2 |
| 29 | 1+1.41e5T+1.45e13T2 |
| 31 | 1+1.84e6T+2.64e13T2 |
| 37 | 1−1.45e5T+1.29e14T2 |
| 41 | 1−1.15e7T+3.27e14T2 |
| 43 | 1−3.71e7T+5.02e14T2 |
| 47 | 1+3.05e7T+1.11e15T2 |
| 53 | 1−8.17e7T+3.29e15T2 |
| 59 | 1+3.46e7T+8.66e15T2 |
| 61 | 1+1.76e8T+1.16e16T2 |
| 67 | 1−1.88e8T+2.72e16T2 |
| 71 | 1+4.23e8T+4.58e16T2 |
| 73 | 1+1.11e8T+5.88e16T2 |
| 79 | 1−2.46e8T+1.19e17T2 |
| 83 | 1−7.57e8T+1.86e17T2 |
| 89 | 1+1.61e8T+3.50e17T2 |
| 97 | 1−7.15e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43927572820388705006874622671, −10.45223130696607767572084346673, −9.063584629926606145280838304817, −7.85323240073822197194737587843, −6.39839816197244797116064006096, −5.75599842924168714446880460173, −4.61346501265048693970798898594, −3.75580371561804240012639153415, −2.47363373035517351595004059726, −0.21672693494326634403472919929,
0.21672693494326634403472919929, 2.47363373035517351595004059726, 3.75580371561804240012639153415, 4.61346501265048693970798898594, 5.75599842924168714446880460173, 6.39839816197244797116064006096, 7.85323240073822197194737587843, 9.063584629926606145280838304817, 10.45223130696607767572084346673, 11.43927572820388705006874622671