L(s) = 1 | + 43.0·2-s − 29.4·3-s + 1.33e3·4-s + 1.66e3·5-s − 1.26e3·6-s + 1.04e4·7-s + 3.56e4·8-s − 1.88e4·9-s + 7.16e4·10-s + 3.86e4·11-s − 3.95e4·12-s + 4.51e5·14-s − 4.91e4·15-s + 8.46e5·16-s − 1.60e4·17-s − 8.09e5·18-s − 1.88e5·19-s + 2.23e6·20-s − 3.09e5·21-s + 1.66e6·22-s + 9.28e5·23-s − 1.05e6·24-s + 8.22e5·25-s + 1.13e6·27-s + 1.40e7·28-s − 7.11e6·29-s − 2.11e6·30-s + ⋯ |
L(s) = 1 | + 1.90·2-s − 0.210·3-s + 2.61·4-s + 1.19·5-s − 0.399·6-s + 1.65·7-s + 3.07·8-s − 0.955·9-s + 2.26·10-s + 0.795·11-s − 0.549·12-s + 3.14·14-s − 0.250·15-s + 3.23·16-s − 0.0467·17-s − 1.81·18-s − 0.331·19-s + 3.11·20-s − 0.347·21-s + 1.51·22-s + 0.691·23-s − 0.646·24-s + 0.421·25-s + 0.411·27-s + 4.32·28-s − 1.86·29-s − 0.476·30-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(169s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
10.88226080 |
L(21) |
≈ |
10.88226080 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−43.0T+512T2 |
| 3 | 1+29.4T+1.96e4T2 |
| 5 | 1−1.66e3T+1.95e6T2 |
| 7 | 1−1.04e4T+4.03e7T2 |
| 11 | 1−3.86e4T+2.35e9T2 |
| 17 | 1+1.60e4T+1.18e11T2 |
| 19 | 1+1.88e5T+3.22e11T2 |
| 23 | 1−9.28e5T+1.80e12T2 |
| 29 | 1+7.11e6T+1.45e13T2 |
| 31 | 1+6.35e6T+2.64e13T2 |
| 37 | 1+1.05e7T+1.29e14T2 |
| 41 | 1−1.59e7T+3.27e14T2 |
| 43 | 1+1.14e7T+5.02e14T2 |
| 47 | 1+2.91e7T+1.11e15T2 |
| 53 | 1−3.86e7T+3.29e15T2 |
| 59 | 1+1.28e8T+8.66e15T2 |
| 61 | 1+7.27e7T+1.16e16T2 |
| 67 | 1+8.28e7T+2.72e16T2 |
| 71 | 1−1.68e8T+4.58e16T2 |
| 73 | 1−2.83e8T+5.88e16T2 |
| 79 | 1−5.18e8T+1.19e17T2 |
| 83 | 1+2.25e8T+1.86e17T2 |
| 89 | 1−8.31e8T+3.50e17T2 |
| 97 | 1−2.66e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25359982842790023464961566087, −10.82887407773419190931681208982, −9.068030584528098448513207619676, −7.59369549117020591009894716092, −6.35183655354116614571921193816, −5.50543054222555937821239523695, −4.92562581213344665502857937526, −3.63048073764595871870774479781, −2.18840618909195532106970022554, −1.56622966613251818465566963611,
1.56622966613251818465566963611, 2.18840618909195532106970022554, 3.63048073764595871870774479781, 4.92562581213344665502857937526, 5.50543054222555937821239523695, 6.35183655354116614571921193816, 7.59369549117020591009894716092, 9.068030584528098448513207619676, 10.82887407773419190931681208982, 11.25359982842790023464961566087