L(s) = 1 | + (−3.11 − 0.834i)2-s + (1.02 + 1.77i)3-s + (5.54 + 3.19i)4-s + (5.50 − 5.50i)5-s + (−1.70 − 6.37i)6-s + (−3.16 + 0.846i)7-s + (−5.47 − 5.47i)8-s + (2.40 − 4.16i)9-s + (−21.7 + 12.5i)10-s + (−1.31 + 4.90i)11-s + 13.0i·12-s + 10.5·14-s + (15.3 + 4.12i)15-s + (−0.322 − 0.558i)16-s + (8.72 + 5.03i)17-s + (−10.9 + 10.9i)18-s + ⋯ |
L(s) = 1 | + (−1.55 − 0.417i)2-s + (0.341 + 0.590i)3-s + (1.38 + 0.799i)4-s + (1.10 − 1.10i)5-s + (−0.284 − 1.06i)6-s + (−0.451 + 0.120i)7-s + (−0.683 − 0.683i)8-s + (0.267 − 0.463i)9-s + (−2.17 + 1.25i)10-s + (−0.119 + 0.445i)11-s + 1.09i·12-s + 0.753·14-s + (1.02 + 0.274i)15-s + (−0.0201 − 0.0349i)16-s + (0.513 + 0.296i)17-s + (−0.609 + 0.609i)18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.623+0.781i)Λ(3−s)
Λ(s)=(=(169s/2ΓC(s+1)L(s)(0.623+0.781i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.623+0.781i
|
Analytic conductor: |
4.60491 |
Root analytic conductor: |
2.14590 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(80,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1), 0.623+0.781i)
|
Particular Values
L(23) |
≈ |
0.823796−0.396763i |
L(21) |
≈ |
0.823796−0.396763i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(3.11+0.834i)T+(3.46+2i)T2 |
| 3 | 1+(−1.02−1.77i)T+(−4.5+7.79i)T2 |
| 5 | 1+(−5.50+5.50i)T−25iT2 |
| 7 | 1+(3.16−0.846i)T+(42.4−24.5i)T2 |
| 11 | 1+(1.31−4.90i)T+(−104.−60.5i)T2 |
| 17 | 1+(−8.72−5.03i)T+(144.5+250.i)T2 |
| 19 | 1+(3.07+11.4i)T+(−312.+180.5i)T2 |
| 23 | 1+(−27.5+15.9i)T+(264.5−458.i)T2 |
| 29 | 1+(16.3+28.2i)T+(−420.5+728.i)T2 |
| 31 | 1+(−8.05+8.05i)T−961iT2 |
| 37 | 1+(−11.4+42.7i)T+(−1.18e3−684.5i)T2 |
| 41 | 1+(−45.6−12.2i)T+(1.45e3+840.5i)T2 |
| 43 | 1+(−20.1−11.6i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(−64.6−64.6i)T+2.20e3iT2 |
| 53 | 1+48.7T+2.80e3T2 |
| 59 | 1+(23.5−6.31i)T+(3.01e3−1.74e3i)T2 |
| 61 | 1+(6.30−10.9i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−16.7−4.48i)T+(3.88e3+2.24e3i)T2 |
| 71 | 1+(10.4+38.8i)T+(−4.36e3+2.52e3i)T2 |
| 73 | 1+(76.5+76.5i)T+5.32e3iT2 |
| 79 | 1+94.0T+6.24e3T2 |
| 83 | 1+(33.6−33.6i)T−6.88e3iT2 |
| 89 | 1+(9.39−35.0i)T+(−6.85e3−3.96e3i)T2 |
| 97 | 1+(−10.7−40.1i)T+(−8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.39893746351157645278052581707, −10.92997551735630090469630904665, −9.970114589987452088552911722058, −9.263098967936142922475680428269, −8.998022855513645814887861141494, −7.62457284787183206338454480440, −6.14296158577976590342652459362, −4.57935272577756933731728372391, −2.57656874567734805831315343369, −1.01445487564334024486990373070,
1.51557483897666923047778109158, 2.89347416876358866538589217714, 5.75372370587984802745357989225, 6.86699348123274564144303927029, 7.41181466711533650816275581904, 8.613028364233845104979939442840, 9.675886173425645541891415449394, 10.35410080224383763300898454572, 11.12915140852926141118624692469, 12.88715852891347977150662047081