L(s) = 1 | + (−0.834 + 3.11i)2-s + (1.02 + 1.77i)3-s + (−5.54 − 3.19i)4-s + (−5.50 − 5.50i)5-s + (−6.37 + 1.70i)6-s + (−0.846 − 3.16i)7-s + (5.47 − 5.47i)8-s + (2.40 − 4.16i)9-s + (21.7 − 12.5i)10-s + (−4.90 − 1.31i)11-s − 13.0i·12-s + 10.5·14-s + (4.12 − 15.3i)15-s + (−0.322 − 0.558i)16-s + (−8.72 − 5.03i)17-s + (10.9 + 10.9i)18-s + ⋯ |
L(s) = 1 | + (−0.417 + 1.55i)2-s + (0.341 + 0.590i)3-s + (−1.38 − 0.799i)4-s + (−1.10 − 1.10i)5-s + (−1.06 + 0.284i)6-s + (−0.120 − 0.451i)7-s + (0.683 − 0.683i)8-s + (0.267 − 0.463i)9-s + (2.17 − 1.25i)10-s + (−0.445 − 0.119i)11-s − 1.09i·12-s + 0.753·14-s + (0.274 − 1.02i)15-s + (−0.0201 − 0.0349i)16-s + (−0.513 − 0.296i)17-s + (0.609 + 0.609i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.750 + 0.661i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.750 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.346603 - 0.130927i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.346603 - 0.130927i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (0.834 - 3.11i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (-1.02 - 1.77i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (5.50 + 5.50i)T + 25iT^{2} \) |
| 7 | \( 1 + (0.846 + 3.16i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (4.90 + 1.31i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (8.72 + 5.03i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (11.4 - 3.07i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (27.5 - 15.9i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (16.3 + 28.2i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (8.05 + 8.05i)T + 961iT^{2} \) |
| 37 | \( 1 + (-42.7 - 11.4i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-12.2 + 45.6i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (20.1 + 11.6i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (64.6 - 64.6i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 48.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (6.31 + 23.5i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (6.30 - 10.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-4.48 + 16.7i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (38.8 - 10.4i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-76.5 + 76.5i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 94.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-33.6 - 33.6i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (35.0 + 9.39i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-40.1 + 10.7i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.62714290854710913652195072672, −11.44461345564866401151999956673, −9.879309404989894431069582263308, −9.068326832257484902710796694367, −8.160358600818152860563275007953, −7.50460972570149879862929131429, −6.15310656577756503885213410726, −4.75801586329778902402611648251, −3.92641203491853923619597350671, −0.24261133922988061036500242751,
2.07533911828733906491818040184, 3.05425464923891770394525947691, 4.31901653940667426150837757282, 6.60506012672403692983224930280, 7.79862436917114440173097732412, 8.601609711895835011785117062058, 10.02810016541315238105503428933, 10.83731430973075783277902563943, 11.49616873307482845059035463016, 12.52723449886998485052934338405