L(s) = 1 | + (−0.515 + 1.92i)2-s + (0.299 + 0.519i)3-s + (0.0309 + 0.0178i)4-s + (5.65 + 5.65i)5-s + (−1.15 + 0.308i)6-s + (−0.526 − 1.96i)7-s + (−5.68 + 5.68i)8-s + (4.32 − 7.48i)9-s + (−13.7 + 7.95i)10-s + (14.0 + 3.76i)11-s + 0.0214i·12-s + 4.05·14-s + (−1.24 + 4.62i)15-s + (−7.92 − 13.7i)16-s + (−10.2 − 5.90i)17-s + (12.1 + 12.1i)18-s + ⋯ |
L(s) = 1 | + (−0.257 + 0.961i)2-s + (0.0999 + 0.173i)3-s + (0.00773 + 0.00446i)4-s + (1.13 + 1.13i)5-s + (−0.192 + 0.0514i)6-s + (−0.0752 − 0.280i)7-s + (−0.710 + 0.710i)8-s + (0.480 − 0.831i)9-s + (−1.37 + 0.795i)10-s + (1.27 + 0.342i)11-s + 0.00178i·12-s + 0.289·14-s + (−0.0826 + 0.308i)15-s + (−0.495 − 0.858i)16-s + (−0.601 − 0.347i)17-s + (0.675 + 0.675i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.504 - 0.863i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.504 - 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.859149 + 1.49704i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.859149 + 1.49704i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (0.515 - 1.92i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (-0.299 - 0.519i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (-5.65 - 5.65i)T + 25iT^{2} \) |
| 7 | \( 1 + (0.526 + 1.96i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-14.0 - 3.76i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (10.2 + 5.90i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (23.4 - 6.28i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-0.229 + 0.132i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (3.60 + 6.25i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (30.2 + 30.2i)T + 961iT^{2} \) |
| 37 | \( 1 + (-13.1 - 3.53i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-9.00 + 33.6i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-35.0 - 20.2i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (9.87 - 9.87i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 77.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + (9.32 + 34.8i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-15.4 + 26.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (16.1 - 60.4i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-8.34 + 2.23i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-23.3 + 23.3i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 49.8T + 6.24e3T^{2} \) |
| 83 | \( 1 + (60.7 + 60.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-85.6 - 22.9i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (32.6 - 8.75i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.07103363967669989999479787732, −11.80724639404624003359222404248, −10.72590364964405311703242335589, −9.631693013635334598130668962226, −8.921276875808931986782856611631, −7.27393846156734682353893206190, −6.60661573277273417416939891517, −5.95526555596792784850381365019, −3.92691926232441695487836156234, −2.26053475659519885743776778064,
1.32284540291596326444219357799, 2.25872887536294057010202119139, 4.24998721295863761627849222269, 5.72106023101814798084479483230, 6.76924379550929555669288640842, 8.709553088459899940092482499455, 9.174014490529345492707623716000, 10.26370459682319378281878868735, 11.12409032943640179315681185309, 12.35498314887585470035288333655