L(s) = 1 | + (−0.515 + 1.92i)2-s + (0.299 + 0.519i)3-s + (0.0309 + 0.0178i)4-s + (5.65 + 5.65i)5-s + (−1.15 + 0.308i)6-s + (−0.526 − 1.96i)7-s + (−5.68 + 5.68i)8-s + (4.32 − 7.48i)9-s + (−13.7 + 7.95i)10-s + (14.0 + 3.76i)11-s + 0.0214i·12-s + 4.05·14-s + (−1.24 + 4.62i)15-s + (−7.92 − 13.7i)16-s + (−10.2 − 5.90i)17-s + (12.1 + 12.1i)18-s + ⋯ |
L(s) = 1 | + (−0.257 + 0.961i)2-s + (0.0999 + 0.173i)3-s + (0.00773 + 0.00446i)4-s + (1.13 + 1.13i)5-s + (−0.192 + 0.0514i)6-s + (−0.0752 − 0.280i)7-s + (−0.710 + 0.710i)8-s + (0.480 − 0.831i)9-s + (−1.37 + 0.795i)10-s + (1.27 + 0.342i)11-s + 0.00178i·12-s + 0.289·14-s + (−0.0826 + 0.308i)15-s + (−0.495 − 0.858i)16-s + (−0.601 − 0.347i)17-s + (0.675 + 0.675i)18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.504−0.863i)Λ(3−s)
Λ(s)=(=(169s/2ΓC(s+1)L(s)(−0.504−0.863i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.504−0.863i
|
Analytic conductor: |
4.60491 |
Root analytic conductor: |
2.14590 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1), −0.504−0.863i)
|
Particular Values
L(23) |
≈ |
0.859149+1.49704i |
L(21) |
≈ |
0.859149+1.49704i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(0.515−1.92i)T+(−3.46−2i)T2 |
| 3 | 1+(−0.299−0.519i)T+(−4.5+7.79i)T2 |
| 5 | 1+(−5.65−5.65i)T+25iT2 |
| 7 | 1+(0.526+1.96i)T+(−42.4+24.5i)T2 |
| 11 | 1+(−14.0−3.76i)T+(104.+60.5i)T2 |
| 17 | 1+(10.2+5.90i)T+(144.5+250.i)T2 |
| 19 | 1+(23.4−6.28i)T+(312.−180.5i)T2 |
| 23 | 1+(−0.229+0.132i)T+(264.5−458.i)T2 |
| 29 | 1+(3.60+6.25i)T+(−420.5+728.i)T2 |
| 31 | 1+(30.2+30.2i)T+961iT2 |
| 37 | 1+(−13.1−3.53i)T+(1.18e3+684.5i)T2 |
| 41 | 1+(−9.00+33.6i)T+(−1.45e3−840.5i)T2 |
| 43 | 1+(−35.0−20.2i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(9.87−9.87i)T−2.20e3iT2 |
| 53 | 1−77.1T+2.80e3T2 |
| 59 | 1+(9.32+34.8i)T+(−3.01e3+1.74e3i)T2 |
| 61 | 1+(−15.4+26.7i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(16.1−60.4i)T+(−3.88e3−2.24e3i)T2 |
| 71 | 1+(−8.34+2.23i)T+(4.36e3−2.52e3i)T2 |
| 73 | 1+(−23.3+23.3i)T−5.32e3iT2 |
| 79 | 1+49.8T+6.24e3T2 |
| 83 | 1+(60.7+60.7i)T+6.88e3iT2 |
| 89 | 1+(−85.6−22.9i)T+(6.85e3+3.96e3i)T2 |
| 97 | 1+(32.6−8.75i)T+(8.14e3−4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.07103363967669989999479787732, −11.80724639404624003359222404248, −10.72590364964405311703242335589, −9.631693013635334598130668962226, −8.921276875808931986782856611631, −7.27393846156734682353893206190, −6.60661573277273417416939891517, −5.95526555596792784850381365019, −3.92691926232441695487836156234, −2.26053475659519885743776778064,
1.32284540291596326444219357799, 2.25872887536294057010202119139, 4.24998721295863761627849222269, 5.72106023101814798084479483230, 6.76924379550929555669288640842, 8.709553088459899940092482499455, 9.174014490529345492707623716000, 10.26370459682319378281878868735, 11.12409032943640179315681185309, 12.35498314887585470035288333655