L(s) = 1 | + (−0.429 + 1.60i)2-s + (−0.677 − 1.17i)3-s + (1.07 + 0.620i)4-s + (−1.57 − 1.57i)5-s + (2.17 − 0.582i)6-s + (−3.25 − 12.1i)7-s + (−6.15 + 6.15i)8-s + (3.58 − 6.20i)9-s + (3.20 − 1.84i)10-s + (−7.38 − 1.97i)11-s − 1.67i·12-s + 20.9·14-s + (−0.780 + 2.91i)15-s + (−4.74 − 8.22i)16-s + (−12.9 − 7.49i)17-s + (8.41 + 8.41i)18-s + ⋯ |
L(s) = 1 | + (−0.214 + 0.802i)2-s + (−0.225 − 0.390i)3-s + (0.268 + 0.155i)4-s + (−0.314 − 0.314i)5-s + (0.362 − 0.0970i)6-s + (−0.465 − 1.73i)7-s + (−0.769 + 0.769i)8-s + (0.398 − 0.689i)9-s + (0.320 − 0.184i)10-s + (−0.671 − 0.179i)11-s − 0.139i·12-s + 1.49·14-s + (−0.0520 + 0.194i)15-s + (−0.296 − 0.514i)16-s + (−0.763 − 0.440i)17-s + (0.467 + 0.467i)18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.490+0.871i)Λ(3−s)
Λ(s)=(=(169s/2ΓC(s+1)L(s)(0.490+0.871i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.490+0.871i
|
Analytic conductor: |
4.60491 |
Root analytic conductor: |
2.14590 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1), 0.490+0.871i)
|
Particular Values
L(23) |
≈ |
0.844351−0.493455i |
L(21) |
≈ |
0.844351−0.493455i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(0.429−1.60i)T+(−3.46−2i)T2 |
| 3 | 1+(0.677+1.17i)T+(−4.5+7.79i)T2 |
| 5 | 1+(1.57+1.57i)T+25iT2 |
| 7 | 1+(3.25+12.1i)T+(−42.4+24.5i)T2 |
| 11 | 1+(7.38+1.97i)T+(104.+60.5i)T2 |
| 17 | 1+(12.9+7.49i)T+(144.5+250.i)T2 |
| 19 | 1+(−21.4+5.75i)T+(312.−180.5i)T2 |
| 23 | 1+(−21.0+12.1i)T+(264.5−458.i)T2 |
| 29 | 1+(−16.0−27.8i)T+(−420.5+728.i)T2 |
| 31 | 1+(−1.13−1.13i)T+961iT2 |
| 37 | 1+(1.10+0.295i)T+(1.18e3+684.5i)T2 |
| 41 | 1+(6.93−25.8i)T+(−1.45e3−840.5i)T2 |
| 43 | 1+(−2.53−1.46i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(−28.5+28.5i)T−2.20e3iT2 |
| 53 | 1+80.4T+2.80e3T2 |
| 59 | 1+(4.35+16.2i)T+(−3.01e3+1.74e3i)T2 |
| 61 | 1+(10.8−18.7i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(3.71−13.8i)T+(−3.88e3−2.24e3i)T2 |
| 71 | 1+(−4.18+1.12i)T+(4.36e3−2.52e3i)T2 |
| 73 | 1+(−26.0+26.0i)T−5.32e3iT2 |
| 79 | 1−36.3T+6.24e3T2 |
| 83 | 1+(−56.7−56.7i)T+6.88e3iT2 |
| 89 | 1+(−96.2−25.7i)T+(6.85e3+3.96e3i)T2 |
| 97 | 1+(−154.+41.3i)T+(8.14e3−4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.49052899896780840732472850452, −11.40218602167250379295739658913, −10.41998176007422380990944042526, −9.145851545955451827087438283911, −7.85239452834095536468048288994, −7.08038310896101416137196980258, −6.47313626489025798443723697587, −4.78074351432146988123435687198, −3.24632395194187650220116035113, −0.64236263591886949538325001920,
2.12318917712047719708682656756, 3.22698947342690165039551564011, 5.12608814236645429286118130115, 6.16646124448313934307035731995, 7.57982073003006026323539026793, 9.050133571447039601311357674198, 9.831017922338721237099281245903, 10.84222793049700128838719910817, 11.57003855664544966407648524504, 12.42824521758031186723350492596