L(s) = 1 | + (−0.429 + 1.60i)2-s + (−0.677 − 1.17i)3-s + (1.07 + 0.620i)4-s + (−1.57 − 1.57i)5-s + (2.17 − 0.582i)6-s + (−3.25 − 12.1i)7-s + (−6.15 + 6.15i)8-s + (3.58 − 6.20i)9-s + (3.20 − 1.84i)10-s + (−7.38 − 1.97i)11-s − 1.67i·12-s + 20.9·14-s + (−0.780 + 2.91i)15-s + (−4.74 − 8.22i)16-s + (−12.9 − 7.49i)17-s + (8.41 + 8.41i)18-s + ⋯ |
L(s) = 1 | + (−0.214 + 0.802i)2-s + (−0.225 − 0.390i)3-s + (0.268 + 0.155i)4-s + (−0.314 − 0.314i)5-s + (0.362 − 0.0970i)6-s + (−0.465 − 1.73i)7-s + (−0.769 + 0.769i)8-s + (0.398 − 0.689i)9-s + (0.320 − 0.184i)10-s + (−0.671 − 0.179i)11-s − 0.139i·12-s + 1.49·14-s + (−0.0520 + 0.194i)15-s + (−0.296 − 0.514i)16-s + (−0.763 − 0.440i)17-s + (0.467 + 0.467i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.490 + 0.871i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.490 + 0.871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.844351 - 0.493455i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.844351 - 0.493455i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (0.429 - 1.60i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (0.677 + 1.17i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (1.57 + 1.57i)T + 25iT^{2} \) |
| 7 | \( 1 + (3.25 + 12.1i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (7.38 + 1.97i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (12.9 + 7.49i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-21.4 + 5.75i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-21.0 + 12.1i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-16.0 - 27.8i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-1.13 - 1.13i)T + 961iT^{2} \) |
| 37 | \( 1 + (1.10 + 0.295i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (6.93 - 25.8i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-2.53 - 1.46i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-28.5 + 28.5i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 80.4T + 2.80e3T^{2} \) |
| 59 | \( 1 + (4.35 + 16.2i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (10.8 - 18.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (3.71 - 13.8i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-4.18 + 1.12i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-26.0 + 26.0i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 36.3T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-56.7 - 56.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-96.2 - 25.7i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-154. + 41.3i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.49052899896780840732472850452, −11.40218602167250379295739658913, −10.41998176007422380990944042526, −9.145851545955451827087438283911, −7.85239452834095536468048288994, −7.08038310896101416137196980258, −6.47313626489025798443723697587, −4.78074351432146988123435687198, −3.24632395194187650220116035113, −0.64236263591886949538325001920,
2.12318917712047719708682656756, 3.22698947342690165039551564011, 5.12608814236645429286118130115, 6.16646124448313934307035731995, 7.57982073003006026323539026793, 9.050133571447039601311357674198, 9.831017922338721237099281245903, 10.84222793049700128838719910817, 11.57003855664544966407648524504, 12.42824521758031186723350492596