L(s) = 1 | + (3.46 − 2i)2-s + (−1 − 1.73i)3-s + (3.99 − 6.92i)4-s + 17i·5-s + (−6.92 − 3.99i)6-s + (17.3 + 10i)7-s + (11.5 − 19.9i)9-s + (34 + 58.8i)10-s + (27.7 − 16i)11-s − 15.9·12-s + 80·14-s + (29.4 − 17i)15-s + (31.9 + 55.4i)16-s + (−6.5 + 11.2i)17-s − 92i·18-s + (−25.9 − 15i)19-s + ⋯ |
L(s) = 1 | + (1.22 − 0.707i)2-s + (−0.192 − 0.333i)3-s + (0.499 − 0.866i)4-s + 1.52i·5-s + (−0.471 − 0.272i)6-s + (0.935 + 0.539i)7-s + (0.425 − 0.737i)9-s + (1.07 + 1.86i)10-s + (0.759 − 0.438i)11-s − 0.384·12-s + 1.52·14-s + (0.506 − 0.292i)15-s + (0.499 + 0.866i)16-s + (−0.0927 + 0.160i)17-s − 1.20i·18-s + (−0.313 − 0.181i)19-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.967+0.252i)Λ(4−s)
Λ(s)=(=(169s/2ΓC(s+3/2)L(s)(0.967+0.252i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.967+0.252i
|
Analytic conductor: |
9.97132 |
Root analytic conductor: |
3.15774 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :3/2), 0.967+0.252i)
|
Particular Values
L(2) |
≈ |
3.36275−0.431752i |
L(21) |
≈ |
3.36275−0.431752i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(−3.46+2i)T+(4−6.92i)T2 |
| 3 | 1+(1+1.73i)T+(−13.5+23.3i)T2 |
| 5 | 1−17iT−125T2 |
| 7 | 1+(−17.3−10i)T+(171.5+297.i)T2 |
| 11 | 1+(−27.7+16i)T+(665.5−1.15e3i)T2 |
| 17 | 1+(6.5−11.2i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(25.9+15i)T+(3.42e3+5.94e3i)T2 |
| 23 | 1+(−39−67.5i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(98.5+170.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+74iT−2.97e4T2 |
| 37 | 1+(−196.+113.5i)T+(2.53e4−4.38e4i)T2 |
| 41 | 1+(142.−82.5i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(78−135.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1−162iT−1.03e5T2 |
| 53 | 1−93T+1.48e5T2 |
| 59 | 1+(748.+432i)T+(1.02e5+1.77e5i)T2 |
| 61 | 1+(72.5−125.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−746.+431i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1+(566.+327i)T+(1.78e5+3.09e5i)T2 |
| 73 | 1+215iT−3.89e5T2 |
| 79 | 1+76T+4.93e5T2 |
| 83 | 1−628iT−5.71e5T2 |
| 89 | 1+(−230.+133i)T+(3.52e5−6.10e5i)T2 |
| 97 | 1+(206.+119i)T+(4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.13687757413320869896724752614, −11.38686262471289680451561470937, −10.96737475469685343588857812177, −9.511688941655934429260573859276, −7.933881390920548303463260050649, −6.60916279389742401079830992922, −5.79331407752267733878280277254, −4.23142765820583406878319203939, −3.14978761307355954195363194354, −1.85042139776134295975923511880,
1.37234244543934425469486742792, 4.11360195887226238013533721709, 4.71314616758000778788612895226, 5.40454543706290499328685267004, 6.93545204156817504678880127090, 8.016155787730277047372686460105, 9.177115583880786930432269119586, 10.46021395257273857043030722160, 11.75064434942650027101840188461, 12.66533173773120425053973979774