Properties

Label 2-13e2-13.10-c3-0-20
Degree 22
Conductor 169169
Sign 0.967+0.252i0.967 + 0.252i
Analytic cond. 9.971329.97132
Root an. cond. 3.157743.15774
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.46 − 2i)2-s + (−1 − 1.73i)3-s + (3.99 − 6.92i)4-s + 17i·5-s + (−6.92 − 3.99i)6-s + (17.3 + 10i)7-s + (11.5 − 19.9i)9-s + (34 + 58.8i)10-s + (27.7 − 16i)11-s − 15.9·12-s + 80·14-s + (29.4 − 17i)15-s + (31.9 + 55.4i)16-s + (−6.5 + 11.2i)17-s − 92i·18-s + (−25.9 − 15i)19-s + ⋯
L(s)  = 1  + (1.22 − 0.707i)2-s + (−0.192 − 0.333i)3-s + (0.499 − 0.866i)4-s + 1.52i·5-s + (−0.471 − 0.272i)6-s + (0.935 + 0.539i)7-s + (0.425 − 0.737i)9-s + (1.07 + 1.86i)10-s + (0.759 − 0.438i)11-s − 0.384·12-s + 1.52·14-s + (0.506 − 0.292i)15-s + (0.499 + 0.866i)16-s + (−0.0927 + 0.160i)17-s − 1.20i·18-s + (−0.313 − 0.181i)19-s + ⋯

Functional equation

Λ(s)=(169s/2ΓC(s)L(s)=((0.967+0.252i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(169s/2ΓC(s+3/2)L(s)=((0.967+0.252i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 169169    =    13213^{2}
Sign: 0.967+0.252i0.967 + 0.252i
Analytic conductor: 9.971329.97132
Root analytic conductor: 3.157743.15774
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ169(23,)\chi_{169} (23, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 169, ( :3/2), 0.967+0.252i)(2,\ 169,\ (\ :3/2),\ 0.967 + 0.252i)

Particular Values

L(2)L(2) \approx 3.362750.431752i3.36275 - 0.431752i
L(12)L(\frac12) \approx 3.362750.431752i3.36275 - 0.431752i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad13 1 1
good2 1+(3.46+2i)T+(46.92i)T2 1 + (-3.46 + 2i)T + (4 - 6.92i)T^{2}
3 1+(1+1.73i)T+(13.5+23.3i)T2 1 + (1 + 1.73i)T + (-13.5 + 23.3i)T^{2}
5 117iT125T2 1 - 17iT - 125T^{2}
7 1+(17.310i)T+(171.5+297.i)T2 1 + (-17.3 - 10i)T + (171.5 + 297. i)T^{2}
11 1+(27.7+16i)T+(665.51.15e3i)T2 1 + (-27.7 + 16i)T + (665.5 - 1.15e3i)T^{2}
17 1+(6.511.2i)T+(2.45e34.25e3i)T2 1 + (6.5 - 11.2i)T + (-2.45e3 - 4.25e3i)T^{2}
19 1+(25.9+15i)T+(3.42e3+5.94e3i)T2 1 + (25.9 + 15i)T + (3.42e3 + 5.94e3i)T^{2}
23 1+(3967.5i)T+(6.08e3+1.05e4i)T2 1 + (-39 - 67.5i)T + (-6.08e3 + 1.05e4i)T^{2}
29 1+(98.5+170.i)T+(1.21e4+2.11e4i)T2 1 + (98.5 + 170. i)T + (-1.21e4 + 2.11e4i)T^{2}
31 1+74iT2.97e4T2 1 + 74iT - 2.97e4T^{2}
37 1+(196.+113.5i)T+(2.53e44.38e4i)T2 1 + (-196. + 113.5i)T + (2.53e4 - 4.38e4i)T^{2}
41 1+(142.82.5i)T+(3.44e45.96e4i)T2 1 + (142. - 82.5i)T + (3.44e4 - 5.96e4i)T^{2}
43 1+(78135.i)T+(3.97e46.88e4i)T2 1 + (78 - 135. i)T + (-3.97e4 - 6.88e4i)T^{2}
47 1162iT1.03e5T2 1 - 162iT - 1.03e5T^{2}
53 193T+1.48e5T2 1 - 93T + 1.48e5T^{2}
59 1+(748.+432i)T+(1.02e5+1.77e5i)T2 1 + (748. + 432i)T + (1.02e5 + 1.77e5i)T^{2}
61 1+(72.5125.i)T+(1.13e51.96e5i)T2 1 + (72.5 - 125. i)T + (-1.13e5 - 1.96e5i)T^{2}
67 1+(746.+431i)T+(1.50e52.60e5i)T2 1 + (-746. + 431i)T + (1.50e5 - 2.60e5i)T^{2}
71 1+(566.+327i)T+(1.78e5+3.09e5i)T2 1 + (566. + 327i)T + (1.78e5 + 3.09e5i)T^{2}
73 1+215iT3.89e5T2 1 + 215iT - 3.89e5T^{2}
79 1+76T+4.93e5T2 1 + 76T + 4.93e5T^{2}
83 1628iT5.71e5T2 1 - 628iT - 5.71e5T^{2}
89 1+(230.+133i)T+(3.52e56.10e5i)T2 1 + (-230. + 133i)T + (3.52e5 - 6.10e5i)T^{2}
97 1+(206.+119i)T+(4.56e5+7.90e5i)T2 1 + (206. + 119i)T + (4.56e5 + 7.90e5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.13687757413320869896724752614, −11.38686262471289680451561470937, −10.96737475469685343588857812177, −9.511688941655934429260573859276, −7.933881390920548303463260050649, −6.60916279389742401079830992922, −5.79331407752267733878280277254, −4.23142765820583406878319203939, −3.14978761307355954195363194354, −1.85042139776134295975923511880, 1.37234244543934425469486742792, 4.11360195887226238013533721709, 4.71314616758000778788612895226, 5.40454543706290499328685267004, 6.93545204156817504678880127090, 8.016155787730277047372686460105, 9.177115583880786930432269119586, 10.46021395257273857043030722160, 11.75064434942650027101840188461, 12.66533173773120425053973979774

Graph of the ZZ-function along the critical line