Properties

Label 2-13e2-1.1-c7-0-42
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 21.5·2-s + 28.3·3-s + 338.·4-s − 473.·5-s − 612.·6-s + 99.1·7-s − 4.54e3·8-s − 1.38e3·9-s + 1.02e4·10-s + 3.43e3·11-s + 9.59e3·12-s − 2.14e3·14-s − 1.34e4·15-s + 5.47e4·16-s + 2.28e4·17-s + 2.98e4·18-s + 3.69e3·19-s − 1.60e5·20-s + 2.81e3·21-s − 7.41e4·22-s − 6.89e4·23-s − 1.28e5·24-s + 1.46e5·25-s − 1.01e5·27-s + 3.35e4·28-s − 1.42e4·29-s + 2.90e5·30-s + ⋯
L(s)  = 1  − 1.90·2-s + 0.606·3-s + 2.64·4-s − 1.69·5-s − 1.15·6-s + 0.109·7-s − 3.13·8-s − 0.631·9-s + 3.23·10-s + 0.777·11-s + 1.60·12-s − 0.208·14-s − 1.02·15-s + 3.34·16-s + 1.13·17-s + 1.20·18-s + 0.123·19-s − 4.47·20-s + 0.0663·21-s − 1.48·22-s − 1.18·23-s − 1.90·24-s + 1.87·25-s − 0.990·27-s + 0.288·28-s − 0.108·29-s + 1.96·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 21.5T + 128T^{2} \)
3 \( 1 - 28.3T + 2.18e3T^{2} \)
5 \( 1 + 473.T + 7.81e4T^{2} \)
7 \( 1 - 99.1T + 8.23e5T^{2} \)
11 \( 1 - 3.43e3T + 1.94e7T^{2} \)
17 \( 1 - 2.28e4T + 4.10e8T^{2} \)
19 \( 1 - 3.69e3T + 8.93e8T^{2} \)
23 \( 1 + 6.89e4T + 3.40e9T^{2} \)
29 \( 1 + 1.42e4T + 1.72e10T^{2} \)
31 \( 1 - 6.63e4T + 2.75e10T^{2} \)
37 \( 1 - 4.17e5T + 9.49e10T^{2} \)
41 \( 1 - 4.64e5T + 1.94e11T^{2} \)
43 \( 1 - 4.13e5T + 2.71e11T^{2} \)
47 \( 1 - 2.87e5T + 5.06e11T^{2} \)
53 \( 1 - 4.48e5T + 1.17e12T^{2} \)
59 \( 1 + 2.73e6T + 2.48e12T^{2} \)
61 \( 1 - 1.80e6T + 3.14e12T^{2} \)
67 \( 1 + 2.14e6T + 6.06e12T^{2} \)
71 \( 1 + 4.21e6T + 9.09e12T^{2} \)
73 \( 1 - 4.79e6T + 1.10e13T^{2} \)
79 \( 1 - 9.39e5T + 1.92e13T^{2} \)
83 \( 1 + 4.55e5T + 2.71e13T^{2} \)
89 \( 1 - 8.34e5T + 4.42e13T^{2} \)
97 \( 1 - 4.92e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91063470224244438098741322025, −9.660019875812038829040561426008, −8.792469215521165731948368212463, −7.88439249714487204854987188955, −7.61507757257929170835361911316, −6.17505930660187662406110104419, −3.82040934918995136057647932000, −2.70900190793780142010406581558, −1.09807136588851126545503552799, 0, 1.09807136588851126545503552799, 2.70900190793780142010406581558, 3.82040934918995136057647932000, 6.17505930660187662406110104419, 7.61507757257929170835361911316, 7.88439249714487204854987188955, 8.792469215521165731948368212463, 9.660019875812038829040561426008, 10.91063470224244438098741322025

Graph of the $Z$-function along the critical line