L(s) = 1 | − 21.5·2-s + 28.3·3-s + 338.·4-s − 473.·5-s − 612.·6-s + 99.1·7-s − 4.54e3·8-s − 1.38e3·9-s + 1.02e4·10-s + 3.43e3·11-s + 9.59e3·12-s − 2.14e3·14-s − 1.34e4·15-s + 5.47e4·16-s + 2.28e4·17-s + 2.98e4·18-s + 3.69e3·19-s − 1.60e5·20-s + 2.81e3·21-s − 7.41e4·22-s − 6.89e4·23-s − 1.28e5·24-s + 1.46e5·25-s − 1.01e5·27-s + 3.35e4·28-s − 1.42e4·29-s + 2.90e5·30-s + ⋯ |
L(s) = 1 | − 1.90·2-s + 0.606·3-s + 2.64·4-s − 1.69·5-s − 1.15·6-s + 0.109·7-s − 3.13·8-s − 0.631·9-s + 3.23·10-s + 0.777·11-s + 1.60·12-s − 0.208·14-s − 1.02·15-s + 3.34·16-s + 1.13·17-s + 1.20·18-s + 0.123·19-s − 4.47·20-s + 0.0663·21-s − 1.48·22-s − 1.18·23-s − 1.90·24-s + 1.87·25-s − 0.990·27-s + 0.288·28-s − 0.108·29-s + 1.96·30-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+21.5T+128T2 |
| 3 | 1−28.3T+2.18e3T2 |
| 5 | 1+473.T+7.81e4T2 |
| 7 | 1−99.1T+8.23e5T2 |
| 11 | 1−3.43e3T+1.94e7T2 |
| 17 | 1−2.28e4T+4.10e8T2 |
| 19 | 1−3.69e3T+8.93e8T2 |
| 23 | 1+6.89e4T+3.40e9T2 |
| 29 | 1+1.42e4T+1.72e10T2 |
| 31 | 1−6.63e4T+2.75e10T2 |
| 37 | 1−4.17e5T+9.49e10T2 |
| 41 | 1−4.64e5T+1.94e11T2 |
| 43 | 1−4.13e5T+2.71e11T2 |
| 47 | 1−2.87e5T+5.06e11T2 |
| 53 | 1−4.48e5T+1.17e12T2 |
| 59 | 1+2.73e6T+2.48e12T2 |
| 61 | 1−1.80e6T+3.14e12T2 |
| 67 | 1+2.14e6T+6.06e12T2 |
| 71 | 1+4.21e6T+9.09e12T2 |
| 73 | 1−4.79e6T+1.10e13T2 |
| 79 | 1−9.39e5T+1.92e13T2 |
| 83 | 1+4.55e5T+2.71e13T2 |
| 89 | 1−8.34e5T+4.42e13T2 |
| 97 | 1−4.92e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.91063470224244438098741322025, −9.660019875812038829040561426008, −8.792469215521165731948368212463, −7.88439249714487204854987188955, −7.61507757257929170835361911316, −6.17505930660187662406110104419, −3.82040934918995136057647932000, −2.70900190793780142010406581558, −1.09807136588851126545503552799, 0,
1.09807136588851126545503552799, 2.70900190793780142010406581558, 3.82040934918995136057647932000, 6.17505930660187662406110104419, 7.61507757257929170835361911316, 7.88439249714487204854987188955, 8.792469215521165731948368212463, 9.660019875812038829040561426008, 10.91063470224244438098741322025