L(s) = 1 | + 6.78i·2-s − 30.1·3-s + 81.9·4-s + 93.2i·5-s − 204. i·6-s + 1.61e3i·7-s + 1.42e3i·8-s − 1.27e3·9-s − 632.·10-s + 6.35e3i·11-s − 2.47e3·12-s − 1.09e4·14-s − 2.81e3i·15-s + 821.·16-s + 8.37e3·17-s − 8.66e3i·18-s + ⋯ |
L(s) = 1 | + 0.599i·2-s − 0.645·3-s + 0.640·4-s + 0.333i·5-s − 0.387i·6-s + 1.78i·7-s + 0.983i·8-s − 0.583·9-s − 0.200·10-s + 1.44i·11-s − 0.413·12-s − 1.06·14-s − 0.215i·15-s + 0.0501·16-s + 0.413·17-s − 0.350i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.832+0.554i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(−0.832+0.554i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.832+0.554i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), −0.832+0.554i)
|
Particular Values
L(4) |
≈ |
1.565099129 |
L(21) |
≈ |
1.565099129 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−6.78iT−128T2 |
| 3 | 1+30.1T+2.18e3T2 |
| 5 | 1−93.2iT−7.81e4T2 |
| 7 | 1−1.61e3iT−8.23e5T2 |
| 11 | 1−6.35e3iT−1.94e7T2 |
| 17 | 1−8.37e3T+4.10e8T2 |
| 19 | 1−2.12e4iT−8.93e8T2 |
| 23 | 1−1.36e3T+3.40e9T2 |
| 29 | 1+9.65e4T+1.72e10T2 |
| 31 | 1+1.11e5iT−2.75e10T2 |
| 37 | 1−4.65e5iT−9.49e10T2 |
| 41 | 1+9.74e4iT−1.94e11T2 |
| 43 | 1−4.03e5T+2.71e11T2 |
| 47 | 1+1.90e4iT−5.06e11T2 |
| 53 | 1−1.14e6T+1.17e12T2 |
| 59 | 1+2.81e6iT−2.48e12T2 |
| 61 | 1+5.46e5T+3.14e12T2 |
| 67 | 1−1.93e6iT−6.06e12T2 |
| 71 | 1+1.12e6iT−9.09e12T2 |
| 73 | 1+3.91e4iT−1.10e13T2 |
| 79 | 1+2.19e6T+1.92e13T2 |
| 83 | 1+9.73e6iT−2.71e13T2 |
| 89 | 1−8.59e6iT−4.42e13T2 |
| 97 | 1+7.31e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.97558650771254353487797902676, −11.33281795419901500655195091822, −10.11573651131084291337104961009, −8.879873090343055450456757339501, −7.81055022307665857541736038132, −6.62548380647639100092500312500, −5.81028820835913716747886893152, −5.04750310732258932502984352325, −2.85810668782116824202375271308, −1.90544191033579816910801408773,
0.49292601228208192088554720595, 1.05979560112169512093227330578, 2.95611514605203479414626367568, 4.00218408797948299848612686339, 5.51908899970035118205344888297, 6.63852934129408032233767666269, 7.58434356857282800871632835310, 8.963612571143143223417522450689, 10.45794744626678238270158398336, 10.88399882792408293811121637233