L(s) = 1 | + 6.78i·2-s − 30.1·3-s + 81.9·4-s + 93.2i·5-s − 204. i·6-s + 1.61e3i·7-s + 1.42e3i·8-s − 1.27e3·9-s − 632.·10-s + 6.35e3i·11-s − 2.47e3·12-s − 1.09e4·14-s − 2.81e3i·15-s + 821.·16-s + 8.37e3·17-s − 8.66e3i·18-s + ⋯ |
L(s) = 1 | + 0.599i·2-s − 0.645·3-s + 0.640·4-s + 0.333i·5-s − 0.387i·6-s + 1.78i·7-s + 0.983i·8-s − 0.583·9-s − 0.200·10-s + 1.44i·11-s − 0.413·12-s − 1.06·14-s − 0.215i·15-s + 0.0501·16-s + 0.413·17-s − 0.350i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 + 0.554i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.565099129\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.565099129\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 - 6.78iT - 128T^{2} \) |
| 3 | \( 1 + 30.1T + 2.18e3T^{2} \) |
| 5 | \( 1 - 93.2iT - 7.81e4T^{2} \) |
| 7 | \( 1 - 1.61e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 6.35e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 - 8.37e3T + 4.10e8T^{2} \) |
| 19 | \( 1 - 2.12e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 1.36e3T + 3.40e9T^{2} \) |
| 29 | \( 1 + 9.65e4T + 1.72e10T^{2} \) |
| 31 | \( 1 + 1.11e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 - 4.65e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 9.74e4iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 4.03e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 1.90e4iT - 5.06e11T^{2} \) |
| 53 | \( 1 - 1.14e6T + 1.17e12T^{2} \) |
| 59 | \( 1 + 2.81e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 5.46e5T + 3.14e12T^{2} \) |
| 67 | \( 1 - 1.93e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 1.12e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + 3.91e4iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 2.19e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 9.73e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 8.59e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 + 7.31e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97558650771254353487797902676, −11.33281795419901500655195091822, −10.11573651131084291337104961009, −8.879873090343055450456757339501, −7.81055022307665857541736038132, −6.62548380647639100092500312500, −5.81028820835913716747886893152, −5.04750310732258932502984352325, −2.85810668782116824202375271308, −1.90544191033579816910801408773,
0.49292601228208192088554720595, 1.05979560112169512093227330578, 2.95611514605203479414626367568, 4.00218408797948299848612686339, 5.51908899970035118205344888297, 6.63852934129408032233767666269, 7.58434356857282800871632835310, 8.963612571143143223417522450689, 10.45794744626678238270158398336, 10.88399882792408293811121637233