L(s) = 1 | + 21.7i·2-s − 67.8·3-s − 346.·4-s + 157. i·5-s − 1.47e3i·6-s − 842. i·7-s − 4.77e3i·8-s + 2.41e3·9-s − 3.43e3·10-s + 1.99e3i·11-s + 2.35e4·12-s + 1.83e4·14-s − 1.07e4i·15-s + 5.96e4·16-s − 9.62e3·17-s + 5.26e4i·18-s + ⋯ |
L(s) = 1 | + 1.92i·2-s − 1.45·3-s − 2.71·4-s + 0.564i·5-s − 2.79i·6-s − 0.927i·7-s − 3.29i·8-s + 1.10·9-s − 1.08·10-s + 0.451i·11-s + 3.93·12-s + 1.78·14-s − 0.818i·15-s + 3.63·16-s − 0.474·17-s + 2.12i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.832+0.554i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(−0.832+0.554i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.832+0.554i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), −0.832+0.554i)
|
Particular Values
L(4) |
≈ |
0.5063389739 |
L(21) |
≈ |
0.5063389739 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−21.7iT−128T2 |
| 3 | 1+67.8T+2.18e3T2 |
| 5 | 1−157.iT−7.81e4T2 |
| 7 | 1+842.iT−8.23e5T2 |
| 11 | 1−1.99e3iT−1.94e7T2 |
| 17 | 1+9.62e3T+4.10e8T2 |
| 19 | 1+8.43e3iT−8.93e8T2 |
| 23 | 1+3.41e4T+3.40e9T2 |
| 29 | 1+9.67e3T+1.72e10T2 |
| 31 | 1−2.05e5iT−2.75e10T2 |
| 37 | 1+4.32e5iT−9.49e10T2 |
| 41 | 1−1.13e5iT−1.94e11T2 |
| 43 | 1−4.00e5T+2.71e11T2 |
| 47 | 1+1.32e6iT−5.06e11T2 |
| 53 | 1−2.98e5T+1.17e12T2 |
| 59 | 1−1.63e6iT−2.48e12T2 |
| 61 | 1−1.66e6T+3.14e12T2 |
| 67 | 1−1.42e6iT−6.06e12T2 |
| 71 | 1+1.03e6iT−9.09e12T2 |
| 73 | 1+4.43e6iT−1.10e13T2 |
| 79 | 1+7.40e6T+1.92e13T2 |
| 83 | 1−7.53e5iT−2.71e13T2 |
| 89 | 1−2.49e6iT−4.42e13T2 |
| 97 | 1−6.38e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.26592280105850207415038410538, −10.82013289829489040070686441068, −10.06943350108820541086616860566, −8.723560789737594595956306584822, −7.25411319092295426565125530199, −6.91807077785162149522162078214, −5.92506626883978693998823645193, −4.96894516058478244759720637116, −4.01903669750111846183870833477, −0.71934860822066789842772638971,
0.28921127799695434504499636790, 1.30073364634274132939900258404, 2.63889412385859513178685277633, 4.21512762021340405202261159426, 5.15953638643277826779806251783, 6.01981061881754087743380353000, 8.321474831841921171922904510742, 9.262448285446477422502427477381, 10.23966474893366742941612405084, 11.22486633144736477578055809827