L(s) = 1 | + 21.7i·2-s − 67.8·3-s − 346.·4-s + 157. i·5-s − 1.47e3i·6-s − 842. i·7-s − 4.77e3i·8-s + 2.41e3·9-s − 3.43e3·10-s + 1.99e3i·11-s + 2.35e4·12-s + 1.83e4·14-s − 1.07e4i·15-s + 5.96e4·16-s − 9.62e3·17-s + 5.26e4i·18-s + ⋯ |
L(s) = 1 | + 1.92i·2-s − 1.45·3-s − 2.71·4-s + 0.564i·5-s − 2.79i·6-s − 0.927i·7-s − 3.29i·8-s + 1.10·9-s − 1.08·10-s + 0.451i·11-s + 3.93·12-s + 1.78·14-s − 0.818i·15-s + 3.63·16-s − 0.474·17-s + 2.12i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 + 0.554i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.5063389739\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5063389739\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 - 21.7iT - 128T^{2} \) |
| 3 | \( 1 + 67.8T + 2.18e3T^{2} \) |
| 5 | \( 1 - 157. iT - 7.81e4T^{2} \) |
| 7 | \( 1 + 842. iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 1.99e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 + 9.62e3T + 4.10e8T^{2} \) |
| 19 | \( 1 + 8.43e3iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 3.41e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 9.67e3T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.05e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 + 4.32e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 1.13e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 4.00e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 1.32e6iT - 5.06e11T^{2} \) |
| 53 | \( 1 - 2.98e5T + 1.17e12T^{2} \) |
| 59 | \( 1 - 1.63e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 1.66e6T + 3.14e12T^{2} \) |
| 67 | \( 1 - 1.42e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 1.03e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + 4.43e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 7.40e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 7.53e5iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 2.49e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 - 6.38e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.26592280105850207415038410538, −10.82013289829489040070686441068, −10.06943350108820541086616860566, −8.723560789737594595956306584822, −7.25411319092295426565125530199, −6.91807077785162149522162078214, −5.92506626883978693998823645193, −4.96894516058478244759720637116, −4.01903669750111846183870833477, −0.71934860822066789842772638971,
0.28921127799695434504499636790, 1.30073364634274132939900258404, 2.63889412385859513178685277633, 4.21512762021340405202261159426, 5.15953638643277826779806251783, 6.01981061881754087743380353000, 8.321474831841921171922904510742, 9.262448285446477422502427477381, 10.23966474893366742941612405084, 11.22486633144736477578055809827