L(s) = 1 | + 3.19i·2-s − 57.0·3-s + 117.·4-s + 431. i·5-s − 182. i·6-s − 225. i·7-s + 785. i·8-s + 1.07e3·9-s − 1.37e3·10-s − 4.16e3i·11-s − 6.72e3·12-s + 719.·14-s − 2.46e4i·15-s + 1.25e4·16-s + 2.58e4·17-s + 3.42e3i·18-s + ⋯ |
L(s) = 1 | + 0.282i·2-s − 1.22·3-s + 0.920·4-s + 1.54i·5-s − 0.344i·6-s − 0.248i·7-s + 0.542i·8-s + 0.489·9-s − 0.436·10-s − 0.944i·11-s − 1.12·12-s + 0.0700·14-s − 1.88i·15-s + 0.766·16-s + 1.27·17-s + 0.138i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.999+0.0304i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(0.999+0.0304i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.999+0.0304i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), 0.999+0.0304i)
|
Particular Values
L(4) |
≈ |
1.426566853 |
L(21) |
≈ |
1.426566853 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−3.19iT−128T2 |
| 3 | 1+57.0T+2.18e3T2 |
| 5 | 1−431.iT−7.81e4T2 |
| 7 | 1+225.iT−8.23e5T2 |
| 11 | 1+4.16e3iT−1.94e7T2 |
| 17 | 1−2.58e4T+4.10e8T2 |
| 19 | 1+4.20e4iT−8.93e8T2 |
| 23 | 1+7.24e4T+3.40e9T2 |
| 29 | 1+1.74e5T+1.72e10T2 |
| 31 | 1+2.90e5iT−2.75e10T2 |
| 37 | 1+1.32e5iT−9.49e10T2 |
| 41 | 1−6.40e5iT−1.94e11T2 |
| 43 | 1+1.75e5T+2.71e11T2 |
| 47 | 1+4.13e5iT−5.06e11T2 |
| 53 | 1−1.28e6T+1.17e12T2 |
| 59 | 1+1.35e6iT−2.48e12T2 |
| 61 | 1−2.73e6T+3.14e12T2 |
| 67 | 1−7.89e5iT−6.06e12T2 |
| 71 | 1+2.07e6iT−9.09e12T2 |
| 73 | 1+3.16e6iT−1.10e13T2 |
| 79 | 1−6.20e6T+1.92e13T2 |
| 83 | 1−1.25e5iT−2.71e13T2 |
| 89 | 1−1.96e6iT−4.42e13T2 |
| 97 | 1−5.34e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30457015638466698254214033712, −10.84402428554196987390758000931, −9.909351251970794812988568033451, −7.915379612975953928392229631035, −7.02249667585445518125117615583, −6.17912600943939817939897248388, −5.55727130960444854782397695844, −3.54307890267009814905692846216, −2.37713474308323682708060897668, −0.52363651255751518993174780611,
0.955815508546847644111075177259, 1.85047565975963797455098176828, 3.88079106070405301494446063228, 5.31965227032585903708635270997, 5.81008158071309551458300330669, 7.21776066762593758185422572851, 8.363552238043402513572302325611, 9.797797498455614344160187500529, 10.52009605642865559828452382928, 12.00638075854582445923584832832